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Background

The problem ?

& Several tasks are ill-posed and ambiguous by nature.
I=1If p(y | «) is multimodal, the conditional mean E(YZ), where
Yz ~ p(y | ), may be not informative enough.

E(Yz)
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Background

Multiple choice learning

£y ()

1= Consider several hypotheses
[Guzman-Rivera et al., 2012]

fo2 (f3, . 15) e F(x,05).

f5 ()

fi ()

= Winner-Takes-All (WTA) loss for a set of hypotheses (sMCL,
[Lee et al., 2016])

Lfotws) w2 min (15 (@5).9.).

I= If a set of targets Yy is available for each xs: same for each y € Y
[Firman et al., 2018].
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Toy experiment

How does it work in practice 7

Let X = [0,1], and Y = [-1,1]>.
@ 2D dist. to predict from input scalar x € X [Rupprecht et al., 2017].
e Input-output pairs available {(xn,yx)} where yy ~p(y | zn).

e Below: ground-truth dist. (green points) for several inputs.
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Toy experiment

Properties

1

Hypotheses

Samples
From p(y | 2)

Zoomed prediction of sMCL at x =0
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Toy experiment

Properties

1

Hypotheses

e Cells centroids

Samples
fromp(y | =)

Centroidal property: ff(z) =E [Y; | Y € Y¥(z)]
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Toy experiment

Properties

1

Inactive cell
Active cell
Hypotheses

e Cells centroids

Samples
from p(y | z)
™ P(Y, € Y*(z)) =0

In inactive cells the predictions f§(x) are meaningless (overconfidence).
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Overconfidence solving

Proposed solution

e Optimization criterion adapted for overconfidence solving.

o Proposition: hypothesis scoring heads v, ...,v¥ € F(X,[0,1]), to

predict P(Y,, € Y¥(x)) ([Tian et al., 2019] adapted for regression).

€£r ——

k
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Backbone
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Overconfidence solving

rMCL output
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Cells centroids

Samples
from p(y | z)

Overconfidence solving in rMCL (with scores displayed in the colorbar).
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Probabilistic interpretation

Probabilistic interpretation proposed at inference

If Yy ~ p(y | ), interpret the heads inference time predictions as

(@) =P (Yo € V(@) (1)
and for k € [1, K] such that v5(z) >0
f@) =E Yo | Yo € Vi(@)] . @)
Example of probabilistic interpretation (justified in the paper)
K
Py @) = 75(@)d k) (y). (3)
k=1
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Sound Source Localization

Audio application: Sound source localization

Multichannel Angular positions of the sources

input audio Y= S2 Sy

2

rcX

dy

4

Sound source localization (SSL).
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Sound Source Localization

Audio application: Sound source localization

e With rMCL: No permutation / imbalance spatial data (smart
grid).
@ No need to know the number of sources in advance.
e Probabilistic output interpretation.
Target dist. p(y|®) o< 3, cy, oy, (¥).
Predicted dist. (rtMCL) p(y|x) o< Sp_, 7’5(w)5f§(w)(y)
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Sound Source Localization

Experimental setup

Datasets. Several datasets (anechoic, reverberant conditions)
[Adavanne et al., 2018].

Metrics. ‘Oracle’ (}): Quality of the best hypotheses.

Earth Mover’s Distance () between p(y |x) and p(y | x)

Neural network backbone CRNN [Adavanne et al., 2018].
Baselines IE, WTA variants, PIT variant

[Lee et al., 2016, Rupprecht et al., 2017, Adavanne et al., 2018, Yu et al., 2017,
Schymura et al., 2021, Makansi et al., 2019].
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Sound Source Localization

Experiments

e Comparisons in unimodal and multimodal conditions.

e rMCL: solves overconfidence issue of SMCL (vanilla WTA).
Competitive, esp. in multimodal setting.

e rMCL: orthogonal to WTA variants (e.g., top-n-WTA, e-WTA).

Sensitivity analysis performed: metrics trade-off when K increases.
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Conclusion

Thank You!

Poster#1220
Arxiv: arxiv.org/abs/2311.01052
Code: github.com/Victorletzelter/code-rMCL
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