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NeRF: Neural Radiance Fields

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. B. Mildenhall et. al., ECCV ‘20

• Novel view synthesis given only input images with known poses

● Input: 5D continuous coordinate
● Output: volume density (1D), color (rgb)  
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NeRF: Neural Radiance Fields
Our focus!

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. B. Mildenhall et. al., ECCV ‘20

• We dive into the actual volume rendering equation.



• The formula that we are all used takes the following form:

• This comes from the continuous integral:
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What We Are Were Used to
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Where did it come from?

• Continuous integral:

• In practice, it is approximated with quadrature, resulting in the 
expression we are used to.

This is the exact integral under the 
piecewise constant opacity approximation!
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• Different from the classical works, the difference with the emergence 
of NeRFs is optimization.
• Opacity and color are learned and trained using the volume rendering 

equation.
• Instead of just being evaluated as in classical works.

• Note: for each set of samples along the ray, the opacity at the left bin 
is assigned for each interval.
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NeRFs with Piecewise Constant Opacity
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Quadrature Instability
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Problems with Quadrature Instability

• Ray Conflicts
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• Non-invertibility of the CDF
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Problems with Quadrature Instability
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Non-continuous and 
hence is not invertible!

Surrogate function is 
needed for importance 
sampling, leading to 
imprecise samples.
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Let’s do better!



• We first showed that the probability of an interval can be exactly 
evaluated iff transmittance (T) is in closed-form:

• We know that this holds for any piecewise polynomial approximation 
for opacity.
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General Form for 𝑃!



• Degree = 0 results in the original 
piecewise constant assumption 
with quadrature instability.

• We further show that for degree ≥
2, it would lead to poor numerical 
conditioning.
• Interpolating a higher degree 

polynomial can give negative opacity 
values when samples are close.
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Quadratic and Higher Order Polynomials



• We use a quadrature under a piecewise linear assumption for 
opacity.
• For 𝑠 ∈ 𝑠#, 𝑠#$% , where 𝜏# = 𝜏 𝑠# , 𝜏 𝑠#$% = 𝜏(𝑠#$%)

Our Piecewise Linear Derivation for Opacity
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Our Piecewise Linear Derivation for Opacity

• Under this assumption, we get the following simple and closed-form 
expressions:
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Our Precise Importance Sampling

• The CDF is increasing and continuous, thus it is invertible!
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• The CDF is increasing and continuous, thus it is invertible!
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Invertibility

• We are also able to derive a closed-form 
solution for inverse transform sampling --
our precise importance sampling.

Which also leads to more effective 
supervision on samples, e.g. depth.
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Our Precise Importance Sampling
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Results: Alleviating Ray Conflicts



Results: Less Fuzzy Surfaces



Results: Crisper Textures



Results: Quantitative
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Results: Qualitative
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Results: Better Geometry Extraction
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Results: Better Geometry Extraction



Drop-in Replacement in Existing Methods
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Drop-in Replacement in Existing Methods



27

Thank you!

Visit our 
Project Page!


