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NeRF: Neural Radiance Fields

* Novel view synthesis given only input images with known poses

e Input: 5D continuous coordinate
o Output: volume density (1D), color (rgb)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. B. Mildenhall et. al., ECCV ‘20



NeRF: Neural Radiance Fields
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 We dive into the actual volume rendering equation.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. B. Mildenhall et. al., ECCV ‘20



What We Are Were Used to

* The formula that we are all used takes the following form:
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* This comes from the continuous integral:

§ = Eqpiolc(s)] = / " p(s)e(s) ds

C(r) = /ttf T(t)o(r(t))c(r(t),d)dt, where T'(t) = exp (— /tt J(r(s))ds) .
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Where did it come from?

* Continuous integral:

C(r) = /ttf T(t)o(r(t))c(r(t),d)dt, where T'(t) = exp (— /tt 0(r(s))ds> .
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* In practice, it is approximated with quadrature, resulting in the

expression we are used to.
$1, S2, ..., SN be IV (ordered) samples

Opacity T
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1 This is the exact integral under the
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NeRFs with Piecewise Constant Opacity

* Different from the classical works, the difference with the emergence

of NeRFs is optimization.
* Opacity and color are learned and trained using the volume rendering

equation.
* Instead of just being evaluated as in classical works.

* Note: for each set of samples along the ray, the opacity at the left bin
is assigned for each interval.

Opacity T

Vs € [sj,8j41], 7(s) = 7(s;),
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Quadrature Instability

Vs € [s5,8541], 7(s) = 7(s5),




Problems with Quadrature Instability

 Ray Conflicts Vs € [s5,8541],7(s) = 7(s;),
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Problems with Quadrature Instability

* Non-invertibility of the CDF
Non-continuous and
hence is not invertible! _O

Surrogate function is
needed for importance
sampling, leading to
imprecise samples.
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Let’s do better!

= Ground truth
=== Linear approx.
----- Constant approx.

Opacity (TJ )

Ray samples (S; )
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General Form for P]

* We first showed that the probability of an interval can be exactly
evaluated iff transmittance (T) is in closed-form:
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* We know that this holds for any piecewise polynomial approximation
for opacity.
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Quadratic and Higher Order Polynomials

7(s) (Opacity)

* Degree = 0 results in the original
plecewise constant assumption
with quadrature instability.

* We further show that for degree > _I
2, it would lead to poor numerical
conditioning.

* Interpolating a higher degree

polynomial can give negative opacity
values when samples are close.

s (Ray Samples)
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Our Piecewise Linear Derivation for Opacity

* We use a quadrature under a piecewise linear assumption for
opacity.

* Fors € [Sj,Sj+1], where 7; = T(Sj),T(Sj+1) = T(Sj+1)

Sit1— S S — S
T(S)=( = )Tj-l-( : )Tj+1.
Sj+1 — 8 Sj+1 — §j

Opacity 7
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Our Piecewise Linear Derivation for Opacity

e Under this assumption, we get the following simple and closed-form
expressions:

2

P, = T(s;)- (1 — exp [_ (Tj+1 +75) (8541 — Sj)]) |

T(s;) = klilleXp {_ (7 + Tk—1)2(5k - Sk—l)] .
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Our Precise Importance Sampling

* The CDF is increasing and continuous, thus it is invertible!
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Invertibility

* The CDF is increasing and continuous, thus it is invertible!

—
F(t)—/p(s ds—ZP+/ ds—ZP+/ ()T (s)ds =
et e /
=
* We are also able to derive a closed-form ~
solution for inverse transform sampling -- B
our precise importance sampling. 5;

IS Bt/ PPN PO 271 — 7k) ( In 75, )) Which also leads to more effective
k (Skt1— Sk) ' supervision on samples, e.g. depth.
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Our Precise Importance Sampling
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Results: Alleviating Ray Conflicts

Ray Conflicts



Results: Less Fuzzy Surfaces
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Results: Crisper Textures
-

Vanilla NeRF (Constant)




Results: Quantitative

Blender Avg. | Chair Drums Ficus Hotdog Lego Mat. Mic Ship
Const. (Vanilla) | 30.61 |32.54 24.79 29.63 36.08 32.01 2931 32.55 27.95
Linear (Ours) [31.10]32.92 25.07 30.18 36.46 3290 29.52 33.08 28.71
Const. (Vanilla) (0.943 {0966 0.918 0960 0.975 0.959 0.943 0.978 0.846
Linear (Ours) [0.9480.969 0.923 0.965 0.977 0966 0.948 0.981 0.857
Const. (Vanilla) | 5.17 | 3.19 7.97 4.14 248 233 432 216 1438
Linear (Ours) | 439 | 2.8 7.10  3.03 228 181 321 173 13.1

RFF Avg. | Fern Flower Fortress Horns Leaves Orchid Room Trex
Const. (Vanilla) [27.5326.79 28.23 3253 28.54 2235 21.20 33.03 27.58
Linear (Ours) |28.05/26.85 28.71 3295 29.38 2251 21.25 33.99 28.79
Const. (Vanilla) (0.874 {0.746 0.886 0.925 0.893 0.816 0.746 0.956 0.916
Linear (Ours) [0.885/0.863 0.902 0.932 0911 0.826 0.754 0.961 0.933
Const. (Vanilla) | 7.37 | 9.67 634 292 726 11.0 11.8 433 5.66
Linear (Ours) | 6.06 | 7.92 493 246 551 959 102 354 438

Table 1: Quantitative Results on Blender and Real Forward Facing Datasets. Reported LPIPS
scores are multiplied by 102
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Results: Qualitative
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Results: Better Geometry Extraction




Results: Better Geometry Extraction

Blender | Avg. | Chair Drums Ficus Hotdog Lego Mat. Mic Ship
Vanilla NeRF | 10.43 |5.162 6.842 29.94 7.555 7.474 6.833 5.214 11.44
PL-NeRF 10.10 (4.676 7.754 29.58 7.004 6.825 6.061 5.213 10.44

CDJ,

Table 3: Geometry Extraction Error Distance between the surface of the GT to the predicted meshes. Scores are x 103
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Drop-in Replacement in Existing Methods

PL-MipNeRF



Drop-in Replacement in Existing Methods

Blender Avg. | Chair Drums Ficus Hotdog Lego Mat. Mic Ship
PSNRT Mip-NeRF |31.76 13395 24.39 31.20 36.12 33.84 30.55 34.63 29.41
PL-MipNeRF | 32.48 |35.11 24.92 32.25 36.51 35.15 30.69 35.22 30.00
Mip-NeRF |0.955/0.975 0.921 0971 0.978 0.971 0.957 0.987 0.876
PL-MipNeRF | 0.959 | 0.981 0.928 0.977 0.980 0.976 0.959 0.989 0.882
Mip-NeRF 364 | 1.80 6.82 235 197 144 239 0973 114
PL-MipNeRF| 3.09 | 1.32 5.78 1.66 1.67 1.07 2.09 0.788 10.3

Table 1: Quantitative Results of Mip-NeRF v.s. PL-MipNeRF Reported LPIPS scores are multiplied by 102

SSIM+

LPIPS,

Blender Avg. | Chair Drums Ficus Hotdog Lego Mat. Mic Ship
PSNR DIVeR 30.78 |32.01 24.72 30.1 3594 29.03 29.31 32.10 29.08
PL-DIVeR [30.88 (32.92 24.7 30.23 3594 33.42 32.06 33.08 28.99

DIVeR 0.95610.959 0.917 0963 0.974 0.965 0.977 0.978 0.870
PL-DIVeR [0.947 |0.969 0916 0.963 0.966 0.966 0.977 0.981 0.871
DIVeR 339 | 279 6.13 234 192 146 1.77 216 17.77
PL-DIVeR | 3.28 | 285 6.01 212 183 149 177 173 7.82

SSIM?

LPIPS|

Table 2: Quantitative Results of DIVeR v.s. PL-DIVeR Reported LPIPS scores are multiplied by 102
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Thank you!
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