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Generative diffusion models

Video Generation2 Conditional generation (text-image) Point Cloud generation4

Image generation1 Inpainting Protein structure generation3
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3 Anand et al. arxiv:2205.15019 (2022)
4 Zeng et al. arxiv:2210.06978 (2022)
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Generating samples by denoising
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Data Destructing data by adding noise Noise

Data Generating samples by denoising Noise

Generation as denoising → Generation as spontaneous symmetry breaking



Symmetries plays a central role in the study of any physical system → conservation laws 

Taken from : https://www.dpreview.com/challenges/Entry.aspx?ID=1166560 | https://www.ccdc.cam.ac.uk/ | https://www.nationalgeographic.es/animales/mariposa-monarca

Symmetry shapes our understanding of the laws of nature

Symmetries are everywhere!
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Symmetry breaking → pattern formation in nature

The emergence of new particles and excitations, and the rigidity of collective states of matter.

Fixed orientation in space  Rotational, translational  symmetry 

Order state  Disorder state 
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Higher symmetry Lower symmetry

“The secret of nature is symmetry, but much of the texture

of the world is due to mechanisms of symmetry breaking.” Gross (1996). 



Spontaneous symmetry breaking – Mexican hat potential

6

Image : Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Spontaneous_symmetry_breaking_%28explanatory_diagram%29.png


Diffusion models undergoes spontaneous symmetry breaking
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Generative capabilities of diffusion models are the result of a phase transition

Diversity comes from this window of instability (criticality) 



Expressing the generative backward equation in terms of a potential energy function
Continuous diffusion models 
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𝒀0
Forward SDE (data → noise)

𝒀𝑇

𝑿0 𝑿𝑇

𝑑𝒀𝑠 = 𝑓 𝒀𝑠, 𝑠 𝑑𝑡 + 𝑔(𝑠)𝑑𝑾𝑠

𝑑𝑿𝑡 = 𝑔2 𝑇 − 𝑡 ∇𝒙 log 𝑝 𝑿𝑡, 𝑇 − 𝑡 − 𝑓 𝑿𝑡 , 𝑇 − 𝑡 𝑑𝑡 + 𝑔 𝑇 − 𝑡 𝑑𝑾𝑡

score function

−∇𝑥𝑢 𝑋𝑡 , 𝑇 − 𝑡 Potential Energy Function

𝑑𝑿𝑡 =

−∇𝑥𝑢 𝑋𝑡 , 𝑇 − 𝑡

𝑑𝑡 + 𝑔 𝑇 − 𝑡 𝑑𝑾𝑡

𝑢 𝑿𝑡, 𝑇 − 𝑡 = −𝑔2 𝑇 − 𝑡 log𝑝 𝑿𝑡, 𝑇 − 𝑡 + න
0

𝒙

𝑓 𝑧, 𝑇 − 𝑡 𝑑𝑧

Reverse SDE (data  noise)

Transition kernel

𝑘 𝒚, 𝑠; 𝒚0, 0 = 𝒩(𝒚; 𝜃𝑠𝑦0, (1 − 𝜃𝑠
2)𝐼)

𝜃𝑠 = 𝑒−
1
2 0׬

𝑠
𝛽 𝜏 𝑑𝜏



Expressing the generative backward equation in terms of a potential energy function
OU Process (VP-SDE)
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𝒀0

Forward SDE (data → noise)

𝒀𝑇

𝑿0 𝑿𝑇

𝑑𝒀𝑠 = −
1

2
𝛽 𝑠 𝒀𝑠𝑑𝑡 + 𝛽 𝑠 𝑑𝑾𝑠

𝑑𝑿𝑡 = 𝛽 𝑇 − 𝑡 ∇𝒙 log 𝑝 𝑿𝑡, 𝑇 − 𝑡 +
1

2
𝛽 𝑇 − 𝑡 𝑿𝑡 𝑑𝑡 + 𝛽 𝑇 − 𝑡 𝑑𝑾𝑡

score function

−∇𝑥𝑢 𝑋𝑡 , 𝑇 − 𝑡 Potential Energy Function

𝑑𝑿𝑡 =

−∇𝑥𝑢 𝑋𝑡 , 𝑇 − 𝑡

𝑑𝑡 + 𝛽 𝑇 − 𝑡 𝑑𝑾𝑡

𝑢 𝑿𝑡 , 𝑇 − 𝑡 = −𝛽 𝑇 − 𝑡 log𝑝 𝑿𝑡, 𝑇 − 𝑡 + −
1

4
𝛽 𝑇 − 𝑡 𝑿𝑡

𝟐

Reverse SDE (data  noise)



Theoretical analysis
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Spontaneous symmetry breaking in a one-dimensional diffusion model



Spontaneous symmetry breaking in one-dimensional diffusion models

Let’s consider a dataset consisting of two points {-1, 1} sampled with equal probability.

• The distribution at time  𝑠 = 0 is :

• The symmetry group that preserves the potential : identity and 𝑔 𝑥 = −𝑥

𝑝 𝑦, 0 =
1

2
𝛿 𝑥 − 𝑎 +

1

2
𝛿 𝑥 − 𝑏
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𝑢 𝑿𝑡, 𝑇 − 𝑡 = −𝛽 𝑇 − 𝑡 log 𝑝 𝑿𝑡, 𝑇 − 𝑡 −
1

4
𝛽 𝑇 − 𝑡 𝑿𝑡

𝟐Potential Energy

Function

𝑢 𝑿𝑡, 𝑇 − 𝑡 = −𝛽 𝑇 − 𝑡 log
1

2 2𝜋 1 − 𝜃𝑠
2
(𝑒

−
𝑥−𝜃𝑠

2

2 1−𝜃2
2 + 𝑒

−
𝑥+𝜃𝑠

2

2 1−𝜃2
2 −

1

4
𝛽 𝑇 − 𝑡 𝑋𝑡

2



Generative dynamics and the energy landscape

The evolution of a generated particle through time and across the energy landscape.
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𝑢 𝑿𝑡, 𝑇 − 𝑡 = −𝛽 𝑇 − 𝑡 log
1

2 2𝜋 1 − 𝜃𝑠
2
(𝑒

−
𝑥−𝜃𝑠

2

2 1−𝜃2
2 + 𝑒

−
𝑥+𝜃𝑠

2

2 1−𝜃2
2 −

1

4
𝛽 𝑇 − 𝑡 𝑋𝑡

2

Phase 1: Equal potentiality  (mean reverting) 

Phase 2: Denoising phase 



Stability analysis – Stable equilibrium states

Each of the branched stable paths only preserve a sub-group of the overall symmetry 13

All fixed points can be found by solving the self-consistency equation:

θ𝑇−𝑡 + 1 𝑥∗ = −2𝜃𝑇−𝑡 tanh
θ𝑇−𝑡𝑥

∗

θ𝑇−𝑡 − 1

Phase 1: Equal potentiality  

(mean reverting) 

Phase 2: Denoising phase 



Empirical analysis
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Spontaneous symmetry breaking in trained diffusion models



Analyzing the impact of a late start initialization on FID performance
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There is a sharp degradation in 

performance after a critical time, 

accompanied by an apparent 

discontinuity in the second derivative of 

the FID curve.

Exploratory analysis of FID scores for 

different diffusion time starts

There is an early phase that remains 

unaffected!



Empirical analysis of the potential function in trained diffusion models
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Empirical analysis of the potential function in trained diffusion models
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Empirical analysis of the potential function in trained diffusion models

18



Improving the generative performance of fast samplers
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Through Gaussian late start initialization (gls)



▪ The early dynamics are approximately linear and mean reverting

Gaussian approximation 
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▪ 𝒙𝑠𝑡𝑎𝑟𝑡 no longer 𝑁(𝟎, 𝑰)

▪ We initialize the samplers just before the onset of the instability with a Gaussian approximation.

▪ We refer to this method as “Gaussian late start” (gls)



Visual results on CelebA64 with our Gaussian late start initialization
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Results using Gaussian late start initialization
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Diversity analysis

High generative diversity relies on sampling from the narrow temporal window around the 

critical time, since small perturbations during that window are amplified by the instability.
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Summary

• We show that the generative dynamics of diffusion models exhibit a spontaneous 

symmetry-breaking phenomenon, resulting in two distinct generative phases:

• Phase 1: A linear steady-state dynamics centered around a fixed point.

• Phase 2: An attractor dynamics that guides the model towards the data manifold.

• The period of instability during this transition contributes to the diversity of generated 

samples (critical phenomena).

• We propose a Gaussian late initialization scheme that enhances model performance, 

resulting in up to a 3x FID improvement on fast samplers. 

• The early phase does not significantly contribute to the model's performance.
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g.raya@jads.nl, l.ambrogioni@donders.ru.nl
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Thank you for your attention!

For more information 

mailto:g.raya@jads.nl
mailto:l.ambrogioni@donders.ru.nl
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