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Generative diffusion models

A Natwe stcaun

[T EXXS
@ dand
Sl YRR
¥y EL XY

DALLE-2

-!i

Inpainting Protein structure generat|0n3
DALLE-3 @ & &%

Wl | W O

- _ T <t ‘t‘f“‘i
i /",
t, ]

Video Generation? Conditional generation (text-image) Point Cloud generation*

h\‘kinr/ k I‘} & L:P/



https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2205.15019
https://arxiv.org/abs/2210.06978

S

Generating samples by denoising

~ Data— Destructing data by adding noise »Noise
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noising < Noise

Data<+ ' Generating saples by de

Generation as denoising = Generation as spontaneous symmetry breaking
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Symmetry shapes our understanding of the laws of nature

Symmetries plays a central role in the study of any physical system — conservation laws

| s Translational symmetry x-direction
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Symmetries are everywhere!

Taken from : https://www.dpreview.com/challenges/Entry.aspx?ID=1166560 | https://www.ccdc.cam.ac.uk/ | https://www.nationalgeographic.es/animales/mariposa-monarca
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Symmetry breaking > pattern formation in nature

The emergence of new particles and excitations, and the rigidity of collective states of matter.
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Lower symmetry Higher symmetry
Fixed orientation in space < Rotational, translational symmetry

Order state € Disorder state

“The secret of nature is symmetry, but much of the texture
of the world is due to mechanisms of symmetry breaking.” Gross (1996).
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Spontaneous symmetry breaking — Mexican hat potential
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Diffusion models undergoes spontaneous symmetry breaking

dX, = —Vyu(X,, T — t)dt + g(T — t)dW,
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(a) Symmetry breaking in 1D diffusion model (b) Symmetry breaking in CelebA HQ 256x256

Generative capabilities of diffusion models are the result of a phase transition
Diversity comes from this window of instability (criticality)
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Continuous diffusion models
Expressing the generative backward equation in terms of a potential energy function

Forward SDE (data = noise)

Y, dYs = f(Yg, s)dt + g(s)dW >Y

core function
Xo+—dX, = [g*(T - t)|§x logp(Xy, T — O)|— f (X, T — O)]dt + g(T — t)dW, +—X

Transition kernel —Vu(Xe, T — t) < Potential Energy Function

k(y,s; Yo 0) = N(¥; 05y, (1 — 6D)1)
05 = o2k BT

u(X, T—t)=—-g*(T —t) logp(Xt,T—t)+fxf (z,T — t)dz
e e e e e e H
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Expressing the generative backward equation in terms of a potential energy function

Forward SDE (data - noise)

1
Y, dY, = —E,B(S)stt + B (s)dW Y

X, +— dX, = [,B(T — 6]V, logp(X,, T — 0+ 5 A(T - t)Xt] dt + BT = DdW, +—X

-----------------------------------------

—V, u(Xe, T — t) « Potential Energy Function




JADS

Theoretical analysis

Spontaneous symmetry breaking in a one-dimensional diffusion model
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Spontaneous symmetry breaking in one-dimensional diffusion models

Let’s consider a dataset consisting of two points {-1, 1} sampled with equal probability.
« The distribution at time s =0is: p(y,0) = % 6(x —a) +% 6(x —b)
« The symmetry group that preserves the potential : identity and g(x) = —x

Potential Energy : B 1 2 |
Function T KT 0=~ Ologp(X,, T~ ) — 2 BT — DXL |

\ 1 (x_gs)z (x+95)2

1
u(X,, T —t) =—B(T —t)log (e 20-02)% 4 ¢ 2(1-62)? | — — B(T — t)X?
‘ 2/2n(1 — 62) 4 ‘
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Generative dynamics and the energy landscape
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The evolution of a generated particle through time and across the energy landscape.

Phase 1: Equal potentiality (mean reverting)
Phase 2: Denoising phase
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Stability analysis — Stable equilibrium states

All fixed points can be found by solving the self-consistency equation:
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Figure 3: Bifurcation analysis of the generative dynamics of a one-dimensional diffusion model.

(a) Geometric visualization of bifurcation of fixed points through the intersection of a straight line
and a hyperbolic tangent at a value f7_; > 6.. (b) Bifurcation diagram obtained by numerically
solving the self-consistency equation Eq. 10, demonstrating the bifurcation at the critical value €.
The blue, orange and green lines denote the three paths of fixed-points. The vector field is given by
the drift term (i.e. the gradient of the potential) in the generative SDE.

Each of the branched stable paths only preserve a sub-group of the overall symmetry 13
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Empirical analysis

Spontaneous symmetry breaking in trained diffusion models
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Analyzing the impact of a late start initialization on FID performance

Exploratory analysis of FID scores for
different diffusion time starts

T There is an early phase that remains
(c) Imagenet64 unaffected!
e - There is a sharp degradation in
; performance after a critical time,
" T accompanied by an apparent
(b) CIFAR10 (d) CelebA64 (e) Imagenet late start generation dlscontanIty In the Second derlvatlve Of

Figure 4: Analysis of the model’s performance, as measured by FID scores, for different starting the FID curve.
times using three different sampling methods: the normal DDPM sampler with decreasing time

steps from 7" = 1000 to 0, and fast sampler DDIM and PSDM for 10 and 5 denoising steps. The

vertical line corresponds to the maximum of the second derivative of the FID curve, which offers a

rough estimate of the first bifurcation time. (e) Illustrates samples generation on Imagenet64, while

progressively varying the starting time from 1000 to 100.
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Figure 15: Symmetry breaking in CIFAR10: (a) Generated samples; (b) Time-varied 1D potential
sections (top figure) from a trained diffusion model along circular paths between two samples (bottom
figure), averaged over 20 generated samples from (a).
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Empirical analysis of the potential function in trained diffusion models

T~ t=700

(a) (b)
Figure 16: Symmetry breaking in Imagenet64.

17




Empirical analysis of the potential function in trained diffusion models

(a) (b)
Figure 17: Symmetry breaking in CelebA64.
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Improving the generative performance of fast samplers

Through Gaussian late start initialization (gls)
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Gaussian approximation

= The early dynamics are approximately linear and mean reverting
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Figure 19: The Shapiro-Wilk test assesses the normality of data over time, evaluated over 500

perturbed samples. It helps determine if the data closely follows a Multivariate Gaussian distribution
up to a specific critical time.

Xstqart NO lONger N(O, 1)

= We initialize the samplers just before the onset of the instability with a Gaussian approximation.
= We refer to this method as “Gaussian late start” (gls)
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(b) DDPM n=10, FID=36.66 (d.DDPM n=10, FID=23.79

Figure 5: Comparison of stochastic DDPM samplers on CelebA64 with varying denoising steps.

Subfigures (a) and (c) represent the generative model performance for 5 denoising steps, while (b)
and (d) showcase the results for 10 denoising steps. The DDPM was initialized with the common
standard initialization point s.,,+ = 800 for 5 steps and s, = 900 for 10 steps. Notably, our
Gaussian late start initialization (gls-DDPM) with sg,,+ = 400 for both 5 and 10 denoising steps
demonstrates significant improvements in FID scores and diversity, leveraging spontaneous symmetry
breaking in diffusion models.
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Results using Gaussian late start initialization

Dataset n |gls-DDPM| DDPM Dataset n |gls-DDIM| DDIM Dataset n [gls-PNDM| PNDM
10 4.21 6.75 10 2.44 4.46 10 5.02 14.36

MNIST 5 6.95 13.25 MNIST 5 6.95 13.25 MNIST 5 511 21.22
3 11.92 42.63 3 11.92 42.63 3 38.23 154.89

10 28.77 43.35 10 15.98 19.79 10 5.90 8.35

CIFARI10 5 42.46 84.82 CIFAR10 5 26.36 44.61 CIFAR10 5 9.55 13.77
3 57.03 146.95 3 42.31 109.37 3 34.20 103.11

10 11.05 26.79 10 7.27 11.37 10 2.88 4.92

CelebA32 5 14.79 40.92 CelebA32 5 10.83 23.45 CelebA32 5 4.2 6.61
18.93 59.75 3 16.24 45.34 3 28.60 235.87

10 57.31 65.68 10 36.25 38.21 10 279 28.27

Imagenet64 5 75.11 99.99 Imagenet64 5 52.11 68.21 Imagenet64 5 33.35 34.86
3 91.69 145.71 3 76.92 126.3 3 50.92 70.58

10 23.79 36.66 10 15.82 19.37 10 6.80 8.03

CelebAbd 5 31.24 48.38 CelebAb4 5 22.06 28.51 CelebA64 5 9.26 10.26
3 37.05 62.18 3 29.96 50.304 3 51.72 171.75

(a) DDPM (b) DDIM (c) PNDM

Table 1: Summary of findings regarding image generation quality, as measured by FID scores. The
performance of the stochastic DDPM sampler (a) is compared to the deterministic DDIM (b) and
PNDM (c) samplers in the vanilla case, as well as our Gaussian late start initialization scheme
denoted as “gls”. Results are presented for 3, 5, and 10 denoising steps (denoted as “n’’) across
diverse datasets.




(a) Training set (b) DDPM-1000 (c) gls-DDIM-05 (d) DDIM-05

Figure 7: “Race” diversity analysis on CelebA64 over 50,000 generated samples by (c) gls-DDIM
and (d) DDIM samplers with 5 denoising steps. Results obtained on (a) training set and (b) DDPM
using 1000 denoising steps are provided for reference. Corresponding samples obtained by each set
are shown on top of the pie charts.

High generative diversity relies on sampling from the narrow temporal window around the
critical time, since small perturbations during that window are amplified by the instability.
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Summary

» We show that the generative dynamics of diffusion models exhibit a spontaneous
symmetry-breaking phenomenon, resulting in two distinct generative phases:

. Alinear steady-state dynamics centered around a fixed point.
* Phase 2: An attractor dynamics that guides the model towards the data manifold.

« The period of instability during this transition contributes to the diversity of generated
samples (critical phenomena).
» We propose a Gaussian late initialization scheme that enhances model performance,

resulting in up to a 3x FID improvement on fast samplers.
* The early phase does not significantly contribute to the model's performance.
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Thank you for your attention!

g.raya@jads.nl, l.ambrogioni@donders.ru.nl

For more information
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