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Federated Learning (FL)

* In practice, clients generate their specific private data, as shown by the colorful icons here.
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Statistical Heterogeneity Issue

* Client-specific private data brings the statistical heterogeneity issue
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Statistical Heterogeneity Issue

* With heterogeneous data, clients’ local training turns the received global model to client-specific
local models
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Representation bias phenomenon

» After local training, the feature representations are biased to client-specific domains

&

(a) Before local training

(b) After local training
t-SNE visualization for representations before/after local training in FedAvg.
We use color and shape to distinguish labels and clients, respectively.

Representations form client-specific domains after local training.
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Representation degeneration phenomenon

* At the same time, representations’ quality is also degenerated
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Layer Index

Per-layer MDL (bits) for representations before/after local training in FedAvg.
A large MDL value means low representation quality.
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Personalized FL (pFL)

* pFL methods learn personalized modules, but



Personalized FL (pFL)

* pFL methods learn personalized modules, but

 feature extractors are still trained with only biased local data domains on clients, leading to
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Personalized FL (pFL)

* pFL methods learn personalized modules, but
 feature extractors are still trained with only biased local data domains on clients, leading to

* representation bias and representation degeneration during local training.
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Our Domain Bias Eliminator (DBE)

* Thus, we propose DBE to eliminate domain bias in representation space via two modules:



Our Domain Bias Eliminator (DBE)

* Thus, we propose DBE to eliminate domain bias in representation space via two modules:
* Personalized Representation Bias Memory (PRBM)
* Mean Regularization (MR)



Personalized Representation Bias Memory (PRBM)

 PRBM stores personalized (biased) representation information (z) for each client, and

* make the remaining information (=) to be global.
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Personalized Representation Bias Memory (PRBM)

 PRBM stores personalized (biased) representation information (z) for each client, and

* make the remaining information (=) to be global.
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Personalized Representation Bias Memory (PRBM)

 PRBM stores personalized (biased) representation information (z) for each client, and

* make the remaining information (=) to be global. T
— Extractor

* Formally,

Local loss (original): Lp,(0) :=Ez, y~p; (D f (2 67);0"),y;)]



Personalized Representation Bias Memory (PRBM)

 PRBM stores personalized (biased) representation information (z) for each client, and

* make the remaining information (=) to be global. -
* Formally,
Local loss (original): Lp,(0) :=Ez, y~p; (D f (2 67);0"),y;)

Local loss (with PRBM): Lp,(0:) := E(g, yy~p; [L(h(f(i;07) + 205 0™), ;)]



Personalized Representation Bias Memory (PRBM)

 PRBM stores personalized (biased) representation information (z) for each client, and

* make the remaining information (=) to be global.

* Formally,
Local loss (original): Lp, (9) = E(mi,yi),\,]}i [E(h(f(il%, 9f)3 9h>> y@)]
Local loss (with PRBM): Lp,(0;) =Kz, yiy~p, L(A(f(z;; 07) + 2 6"), ;)]

View the PRBM as a personalized translation transformation PRBM : Z +— Z:
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Personalized Representation Bias Memory (PRBM)

 PRBM stores personalized (biased) representation information (z) for each client, and

* make the remaining information (=) to be global. [ T
* Formally,
Local loss (original): Lp,(0) :=Ez, y~p; (D f (2 67);0"),y,)]
Local loss (with PRBM): Lp,(0;) =Kz, yiy~p, L(A(f(z;; 07) + 2 6"), ;)]

View the PRBM as a personalized translation transformation PRBM : Z +— Z:

£D¢ (9%) = E(migyi)NDi [g(h(PRBM(f(GB?;; Gf); 2?); gh)’ yz)]
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Personalized Representation Bias Memory (PRBM)

* We make PRBM to be trainable to learn personalized representation information



Personalized Representation Bias Memory (PRBM)

* We make PRBM to be trainable to learn personalized representation information

* However, trainable PRBM requires guidance to recognize the global and personalized information
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DBE: PRBM + Mean Regularization (IVIR)

* MR explicitly guides the local feature extractor to generate =/ with global information, by

e further regularize =/ to a globally shared client-invariant mean =¢
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DBE: PRBM + Mean Regularization (IVIR)

* MR explicitly guides the local feature extractor to generate =/ with global information, by

e further regularize =/ to a globally shared client-invariant mean =¢

A consensus obtained during the initialization period before FL
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DBE: PRBM + Mean Regularization (IVIR)

* MR explicitly guides the local feature extractor to generate =/ with global information, by

e further regularize =/ to a globally shared client-invariant mean =¢
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DBE: PRBM + Mean Regularization (IVIR)

* MR explicitly guides the local feature extractor to generate =/ with global information, by

e further regularize =/ to a globally shared client-invariant mean =¢

e Formally,

Local loss (with PRBM):
Lp,(0;) = E(a, yi)~p; [((R(PRBM(f (z;;07); 2); 6"), y;)]
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DBE: PRBM + Mean Regularization (IVIR)

* MR explicitly guides the local feature extractor to generate =/ with global information, by

e further regularize =/ to a globally shared client-invariant mean =¢

e Formally,

Local loss (with PRBM):
LD, (0:) := E(a, y,)~p, [((R(PRBM(f (x;; 67); 27); 8"), yi)]

Local loss (with PRBM and MR):
L0,(8;) = Eay ), [((h(PRBU(f (a1 07 ); 2); ), )] + & - MR(Z{, 29)
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DBE: PRBM + Mean Regularization (IVIR)

* MR explicitly guides the local feature extractor to generate =/ with global information, by

e further regularize =/ to a globally shared client-invariant mean -

e Formally,

Local loss (with PRBM):
LD, (0:) := E(a, y,)~p, [((R(PRBM(f (x;; 67); 27); 8"), yi)]

Local loss (with PRBM and MR):
L0,(8;) = Eay ), [((h(PRBU(f (a1 07 ); 2); ), )] + & - MR(Z{, 29)

\ Final loss for client i

Page 25



Improved Bi-directional Knowledge Transfer

* DBE can promote bi-directional knowledge transfer between server and client with

* Theoretical guarantee



Improved Bi-directional Knowledge Transfer

* Local-to-global knowledge transfer

Corollary 1. Consider a local data domain D; and a virtual global data domain D for client i and
the server, respectively. Let D; = (U;, c*) and D = (U, c*), where ¢* : X — Y is a ground-truth
labeling function. Let H be a hypothesis space of VC dimension d and h : Z — )Y ,¥Y h € H. When
using DBE, given a feature extraction function F9 : X — Z that shared between D; and D, a random
labeled sample of size m generated by applying F9 to a random sample from U; labeled according
to c*, then for every h9 € H, with probability at least 1 — 0:

4 2 4 —
Lp(h?) < Lp (h7) + \/E(dlog % +1og =) +[dp (U7 U)[+ Ni.

where L, is the empirical loss on D;, e is the base of the natural logarithm, and dy(-, ) is the
H-divergence between two distributions. \; := minge Lp(h9) + Lp,(h9), U C Z, UI C Z,
and |dy (U7, UT) < dy (U, U )l U7 and U9 are the induced distributions of U; and U under F,

respectively. U; and U are the induced distributions of U; and U under F, respectively. F is the
feature extraction function in the original FedAvg without DBE.
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Improved Bi-directional Knowledge Transfer

* Global-to-local knowledge transfer

Corollary 2. Let D;, D, F9, and \; defined as in Corollary[l] Given a translation transformation
function PRBN : Z — Z that shared between D; and virtual D, a random labeled sample of size m
generated by applying F' to a random sample from U; labeled according to c*, F' = PRBMo F9 :
X — Z, then for every h' € H, with probability at least 1 — §:

4 2 4 —

Lp,(h') < Lp(h') + \/E(dlog % tlog <) Hdu U, Ui [+ A,

whereliq{ U U = dyy (U, U7 < dyy(UU;) = dH(ZZ,;,Z;{)I U' and U! are the induced distribu-
tions of U and U; under F', respectively.

Please refer to our paper for proofs.
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Extensive Experiments

* How to Split the Model?

Table 1: The MDL (bits, |) of layer-wise representations, test accuracy (%, 1), and the number
of trainable parameters ({) in PRBM when adding DBE to FedAvg on Tiny-ImageNet using 4-layer
CNN in the practical setting. We also show corresponding results for the close pFL methods. For
FedBABU, “[36.82]” indicates the test accuracy after post-FL fine-tuning for 10 local epochs.

Metri | MDL | |
etrics Accuracy Param.
| CONV1—CONV2 CONV2—FCl FC1—FC2 Logits | |
FedPer [3] 5143 4574 3885 4169 33.84 —
FedRep [20] 5102 4237 3922 4244 37.27 —
FedRoD [14] 5063 4264 3783 3820 36.43 —
FedBABU [61] 5083 4181 3948 3849 16.86 [36.82] —
Original (FedAvg) 5081 4151 3844 3895 19.46 0
CONV1—DBE —-CONV2 4650 (-8.48%) 4105 (-1.11%) 3679 (-4.29%) 3756 (-3.57%) | 21.81 (+2.35) 28800
CONV2—DBE —FC1 4348 (-14.43%) 3716 (-10.48%) 3463 (-9.91%) 3602 (-7.52%) | 47.03 (+27.57)|| 10816
FC1—DBE —FC2 4608 (-9.31%) 3689 (-11.13%) 3625 (-5.70%) 3688 (-5.31%) | 43.32 (+23.86) 512
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Extensive Experiments

* Eliminate Representation Bias for the First Level of Representation after local training

(a) FedAvg (B). (b) FedAvg (A).|(c) 4DBE (2, B). (d) +DBE (27, A){ (e) 4DBE (z;, B). (f) +DBE (z;, A).

Figure 3: t-SNE visualization for representations on Tiny-ImageNet (200 labels). “B”” and “A” denote
“before local training” and “after local training”, respectively. We use color and shape to distinguish
labels and clients, respectively. Best viewed in color and zoom-in.




Extensive Experiments

* DBE can greatly improve existing FL methods in both generalization and personalization abilities



Extensive Experiments

* DBE promotes traditional FL methods in both MDL and accuracy by at most
e -22.35% in MDL (bits) and
* +32.30in accuracy (%)

Table 4: The MDL (bits, |) and test accuracy (%, 1) before and after adding DBE to traditional FL
methods on Cifar100, Tiny-ImageNet, and AG News in the practical setting. TINY and TINY*
represent using 4-layer CNN and ResNet-18 on Tiny-ImageNet, respectively.

Metrics MDL Accuracy

Datasets Cifar100 TINY TINY* AG News | Cifar100 TINY TINY* AG News
SCAFFOLD [3§] 1499 3661 3394 1931 33.08 23.26 24.90 88.13
FedProx [46] 1523 3701 3570 2092 31.99 19.37 19.27 87.21
MOON [45] 1516 3696 3536 1836 32.37 19.68 19.02 84.14
FedGen [96] 1506 3675 3551 1414 30.96 19.39 18.53 89.86
SCAFFOLD+DBE 1434 3549 3370 1743 63.601 45.55 45.09 96.73
FedProx+DBE 1439 3587 3490 1689 63.22 42.28 41.45 96.62
MOON+DBE 1432 3580 3461 1683 63.26 43.43 41.10 96.68
FedGen+DBE 1426 3563 3488 1098 63.26 42,54 41.87 97.16




Extensive Experiments

* DBE greatly improves FedAvg at most +47.40 on Cifar100 in the pathological setting and
* outperforms the SOTA pFL methods by up to +11.36 on Cifar1007

Table 5: The test accuracy (%, 1) of pFL methods in two statistically heterogeneous settings.
Cifar1007 represents the experiment with 100 clients and joining ratio p = 0.5 on Cifar100.

Settings Pathological setting Practical setting
FMNIST Cifar100 TINY | FMNIST Cifar100 Cifar100T TINY TINY* AG News

Per-FedAvg [22] 99.18 56.80 28.06 95.10 4428 38.28 25.07 2181 87.08
pFedMe [67] 99.35 58.20 27.71 97.25 47.34 31.13 26.93 3344 87.08
Ditto [47] 09.44 67.23 39.90 97.47 52.87 39.01 32.15 3592 91.89
FedPer [3] 99.47 63.53 39.80 97.44 49.63 41.21 33.84  38.45 91.85
FedRep [20] 99.56 67.56 40.85 97.56 52.39 41.51 37.27  39.95 92.25
FedRoD [14] 99.52 62.30 37.95 97.52 50.94 48.56 3643  37.99 92.16
FedBABU [61] 09.41 66.85 40.72 97.46 55.02 52.07 36.82  34.50 95.86
APFL [21] 09.41 64.26 36.47 97.25 46.74 39.47 3486  35.81 89.37
FedFomo [89] 09.46 62.49 36.55 97.21 45.39 37.59 2633  26.84 91.20
APPLE [52] 99.30 65.80 36.22 97.06 53.22 — 35.04  39.93 84.10
FedAvg 80.41 25.98 14.20 85.85 31.89 28.81 19.46 1945 87.12
FedAvg+DBE 99.74 73.38 42.89 97.69 64.39 63.43 43.32 4298 96.87
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Extensive Experiments

* Other experiments also show the effectiveness and efficiency of our DBE.

Table 6: The test accuracy (%, 1) and computation overhead (|) of pFL methods.

Items Heterogeneity pFL+MR Overhead
=001 =05 B=5]| Accuracy Improvement | Total time Time/iteration
Per-FedAvg [22] 39.39 21.14 12.08 — — 121 min 3.56 min
pFedMe [67] 41.45 17.48 4.03 — — 1157 min 10.24 min
Ditto [47] 50.62 18.98 21.79 42.82 10.67 318 min 11.78 min
FedPer [3] 51.83 17.31 9.61 41.78 7.94 83 min 1.92 min
FedRep [20] 55.43 16.74 8.04 41.28 4.01 471 min 4.09 min
FedRoD [14] 49.17 23.23 16.71 42.74 6.31 87 min 1.74 min
FedBABU [61] 53.97 23.08 15.42 38.17 1.35 811 min 1.58 min
APFL [21] 49.96 23.31 16.12 39.22 4.36 156 min 2.74 min
FedFomo [89] 46.36 11.59 14.86 29.51 3.18 193 min 2.72 min
APPLE [52] 47.89 24.24 17.79 — — 132 min 2.93 min
FedAvg 15.70 21.14 21.71 — — 365 min 1.59 min
FedAvg+DBE 57.52 32.61 25.55 — — 171 min 1.60 min
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Paper with code: https://github.com/TsingZ0/DBE OO0
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