Active Observing in Continuous-time Control **Samuel Holt** Alihan Hüyük Mihaela van der Schaar **NeurIPS 2023 Presentation** # Applications of continuous-time control with observation costs #### Medical cancer chemotherapy treatment Taking expensive Computed Tomography scans, whilst continuously controlling chemotherapy dosing #### Mobile robotics Measuring the robots position, whilst continuously controlling the robot #### Low power communication Measuring the maximum bandwidth, whilst continuously controlling the channel transmission #### Biological fish population management • Fish population survey, whilst continuously controlling the food and temperature. ## What is continuous-time control with costly observations? - Continuous-time environments. - Environment dynamics can be described by a differential equation $$\frac{\mathrm{d}s(t)}{\mathrm{d}t} = f(s(t), a(t))$$ $$z(t) = s(t) + \varepsilon(t) \qquad \varepsilon(t) \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$$ - Offline dataset trajectories of s and a can be observed at irregular time intervals $\Delta_i eq \Delta_j$ - Observation costs of c Objective to maximize utility $$\mathcal{U} = \underbrace{\int_{0}^{T} r(s(t), a(t), t) dt}_{\text{Reward } \mathcal{R}} - \underbrace{c | \{t_i : t_i \in [0, T]\}|}_{\text{Cost } \mathcal{C}}$$ # What is continuous-time control with costly observations? #### Policies ρ,π interacting with the environment - **1.** $t_1 = 0, h_1 = \{(t_1, z(t_1), a(t_1))\}$ - **2.** For $i \in \{1, 2, \ldots\}$: - 3. Schedule next observation: $t_{i+1} = t_i + \rho(h_i)$ - 4. Execute actions: $a(t)=\pi(h_i,t-t_i)$ for $t\in[t_i,t_{i+1})$ - 5. Take an observation: $h_{i+1} = h_i \cup \{(t_{i+1}, z(t_{i+1}), a(t_{i+1}))\}$ $$\rho^*, \pi^* = \operatorname{argmax}_{\rho, \pi} \mathbb{E}[\mathcal{U}]$$ # First to formalize the problem of continuous-time control whilst deciding when to take costly observations - Theoretically, we show that regular observing in continuous time with costly observations is not optimal for some systems and that irregularly observing can achieve a higher expected utility. - Proposition: For some systems, it is not optimal to observe regularly—that is $\exists f, \sigma_\epsilon, r, c, h, h': \rho^*(h) \neq \rho^*(h')$ #### • We propose the Active Observing Control. • A continuous-time model-based offline RL method that uses a heuristic threshold on the variance of reward rollouts in an model predictive control (MPC) planner. #### Benefits: - Can avoid discretization errors in time. - Can learn from an offline dataset sampled with irregular time intervals and has observation costs. - Can achieve high performing utility compared to existing methods. - Allows to only observe when it is informative to do so and observe irregularly in time. - Is robust to the heuristic threshold hyperparameter. - Small run-time complexity, so practical to use. # Environment $\sim z(t_i)$ $$\rho(z(t_i)) = \max\{\Delta' \in \mathbb{R}_+ : \sqrt{\mathbb{V}_{z_p}[r(t_i + \Delta')]} < \tau\}$$ #### Results • Normalized utilities $\,\mathcal{U}\,$, normalized rewards $\,\mathcal{R}\,$ and observations $\,\mathcal{O}\,$ of the baselines. | | | Cancer | | | Acrobot | | | Cartpole | | | Pendulum | | |---------------------------------|----------------|------------------|-------------------|-------------------|-----------------|------------------|-----------------|--------------------------|----------------|---------------|------------------|----------------| | Policy | \mathcal{U} | ${\cal R}$ | \mathcal{O} | $ $ \mathcal{U} | ${\cal R}$ | \mathcal{O} | \mathcal{U} | $\overline{\mathcal{R}}$ | \mathcal{O} | \mathcal{U} | ${\cal R}$ | \mathcal{O} | | Random | 0±0 | 0±0 | 13±0 | 0±0 | 0±0 | 50±0 | 0±0 | 0±0 | 50±0 | 0±0 | 0±0 | 50±0 | | Discrete Planning | 91.7±0.368 | 91.7 ± 0.368 | 13 ± 0 | 87.1±1.05 | 87.1 ± 1.05 | 50 ± 0 | 83.6 ± 0.56 | 83.6 ± 0.56 | 50±0 | 87.2±0.962 | 87.2 ± 0.962 | 50 ± 0 | | Discrete Monitoring | 91 ± 0.532 | 85.8 ± 0.522 | 5.08 ± 0.0327 | 89.6 ± 1.02 | 80.2 ± 1.14 | 43.7 ± 0.189 | 127 ± 0.846 | 82.9 ± 0.532 | 42.3 ± 0.107 | 130 ± 2.52 | 87.3 ± 0.957 | 42.1 ± 0.293 | | Continuous Planning | 100±0.153 | 100 ± 0.153 | 13±0 | 100±0.462 | 100 ± 0.462 | 50±0 | 100±0.772 | 100 ± 0.772 | 50±0 | 100±0.904 | 100 ± 0.904 | 50±0 | | Active Observing Control | 105±0.18 | 98.8±0.169 | 3.37±0.0302 | 107±0.911 | 90.8±0.878 | 39±0.177 | 151±1.54 | 99.5±0.774 | 41.1±0.196 | 177±2.18 | 98.8±0.912 | 35.6±0.239 | - Active Observing Control achieves state-of-the-art episodic utility performance across the cancer environment and standard continuoustime RL environments. - Achieving near expert policy performance, when taking significantly less observations. ## **Insight Experiments** # How does irregularly observing achieve a higher expected utility than regularly observing? AOC Automatically determines to observe larger cancer volumes more frequently as they are more informative, as the future state change magnitude is larger. # **Insight Experiments** How does irregularly observing achieve a higher expected utility than regularly observing? • Frequency of observations per state region for Pendulum. 90° Even when Continuous Planning takes the same number of observations as determined by AOC, it still performs worse, because those observations are not well located. | | | Cancer | | |--|---------------|------------------|-------------------| | Policy | \mathcal{U} | ${\cal R}$ | O | | Active Observing Control | 105±0.183 | 98.8 ± 0.173 | 3.39 ± 0.0306 | | Continuous Planning with $\mathcal{O}=3$ | 102 ± 0.234 | 95.6 ± 0.234 | 3 ± 0 | | Continuous Planning with $\mathcal{O}=4$ | 103±0.226 | 97.3 ± 0.226 | 4±0 | ## **Insight Experiments** Why is it crucial to actively observe with continuous-time methods, rather than discrete-time methods? #### **Contributions** - We are the first to formalize the problem of continuous-time control whilst deciding when to take costly observations. - Can achieve state-of-the-art utility performance. - Can correctly observe the state when it is informative to do so. - It can avoid discretization errors in time, and is robust to its threshold hyperparameter. - This now enables: - Dynamic expensive medical scan scheduling - New improved methods to build on and solve this real-world applicable costly observing whilst continually controlling problem. #### More info neurips.cc/virtual/2023/poste r/70479 github.com/samholt/ActiveObserving InContinuous-timeControl vanderschaarlab.com sih31@cam.ac.uk github.com/samholt samholt.github.io/ linkedin.com/in/samuel-holt