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Motivation & Contribution

• A learning algorithmA : S → W i.e. mapping training sample S to a hypothesisW.

• Gen. err. = E [Test err. − Train err.] ≤ Gen. bound.

Limitations of Information-Theoretic (IT) bounds:

• Original input-output mutual information (IOMI) (e.g., I(W; S) [Xu and Raginsky,

2017] ) based bound can→ ∞
=⇒ solved by conditional mutual information (CMI) I(W;U|Z̃) [Steinke and

Zakynthinou, 2020]

• Slow convergence rate, e.g.,O(1/
√
n)

=⇒mitigated by [Haghifam et al., 2021, Hellström and Durisi, 2021, 2022, Wang and

Mao, 2023, Wu et al., 2023, Zhou et al., 2023]

• Non-vanishing in Stochastic Convex Optimization (SCO) problems for (nearly) all

previous IT bounds![Haghifam et al., 2023]

Our contribution: Incorporating stability-based analysis into IT framework

which improves both stability-based bounds and IT bounds.
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Novel Construction

By using Donsker-Varadhan (DV) lemma:

Gen. Err. ≤ inf
t>0

IOMI or CMI+ CGF

t
. (1)

Let fDV be so-called DV auxiliary function, then

CGF = logE [exp (t · fDV)]. (2)

Let `(w, z) be the loss of hypothesis w evaluated at data z, U ∼ Bern(12).
• Previous works:

fDV = `(W, Z′) e.g., [Bu et al., 2019]

fDV = `(W, Z′)− EZ′ [`(W, Z′)] e.g., [Wu et al., 2023]

fDV = (−1)U (`(W, Z1)− `(W, Z2)) e.g., [Steinke and Zakynthinou, 2020]
• This paper: letW−i be obtained by replacing one data in S,

fDV = `(W, Z′)− EW−i|W
[
`(W−i, Z′)

]
=⇒ IOMI

fDV = (−1)U
(
`(W, Z)− `(W−i, Z)

)
=⇒ New CMI
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Novel Construction

Gen. Err. ≤ inf
t>0

IOMI or CMI+ CGF

t
.

For example,

• Previous CMI: fDV = (−1)U (`(W, Z1)− `(W, Z2))

=⇒ CGF ≤ t2α2

2 , where α = supw,z1,z2 |`(w, z1)− `(w, z2)|
=⇒ Gen. Err. ≤ inft>0

CMI+CGF
t

- α
√
CMI.

• New CMI in this paper: fDV = (−1)U
(
`(W, Z)− `(W−i, Z)

)
=⇒ CGF ≤ t2β2

2 , where β = supw,w−i,z

∣∣`(w, z)− `(w−i, z)
∣∣

=⇒ Gen. Err. ≤ inft>0
New CMI+CGF

t
- β

√
New CMI.

=⇒ β is the uniform stability parameter!
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SCO

In SCO counterexamples given by Haghifam et al. [2023]:

Gen. Err. ≤ O(1/
√
n).

• Previous IOMI or CMI bound in these examples:

α = O(1) (=Lip. Para.×Diam. of data space)

and IOMI≥CMI= O(1).
=⇒ IOMI bound ≥ CMI bound ∈ O(1) =⇒ fail to explain the learnability.

• New CMI bound in these examples:

β = O(1/
√
n)

and New CMI= O(1).
=⇒ New CMI bound ∈ O(1/

√
n)=⇒can explain the learnability.
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Main Result

Key observation: train. data Zi
A→ W; test. data Z′i

A→ W−i .

E [Test err. − Train err.] =E
[
`(W, Z′i )− `(W, Zi)

]
=E

[
`(W−i, Zi)− `(W, Zi)

]
=E

[
`(W, Z′i )− `(W−i, Z′i )

]
Theorem (Informal.)

IfA is β-stable, we have Gen. Err. - β
√

I(ZU;U|W,W−i) ≤ β
√

I(W; Zi)

• β is necessarily uniform stability parameter, e.g., sample-conditioned

hypothesis (SCH) stability.
• More bounds, e.g., fast-rate bounds and second-moment bounds.
• More examples, e.g., our bounds can also improve stability-based bounds.
• More results refer to our paper.
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Thank You!
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