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Representation Learning

Traditional representation learning, used for generative modeling:
Neural model

Observational data Output representations

No structure

Drawbacks:

No structure in representations
Representations are not interpretable or controllable
Susceptibility to bias, poor generalization capabilities
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Causal Representation Learning

Causal representation learning, an emerging field aiming to resolve
this issue:

Neural model

Observational data Output representations

Causal structure in representations

Causal representations will be more robust, interpretable and also
enable alignment
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Causal Representation Learning

Observed data X = f (Z ) - complex,
high-dimensional

Z – simple, low-dimensional, e.g. Gaussian

f – mixing function
Figure: Generative model

Example:

Z – position, type, and size of objects
f – rendering of image
X – image

Goal: Identify f as well as Z
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Causal Representation Learning

Learning ground truth Z , f leads to

Recovery of causal structure
OOD generalization
Robustness
Reliability

Special case - Causal disentanglement (independent latents)

Issue: Impossible!, for any X a huge class of Z and f

Prior works:

Parametric assumptions: [Hyvarinen-Oja 2000]
Semi-supervised: [Khemakhem et al. 2020]
Functional assumptions: [Kivva et al. 2022], [Buchholz et al. 2022]
Interventional data - [Lippe et al. 2022, Squires et al. 2023]
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Interventional Causal Representation Learning

Interventional data: A bunch of additional datasets (environments)

Example: Images of rooms with and without lights

Predominant in robotics: Agent explores environment via
interventions

Long line of prior works

All variables observed: Hauser et al. 2012, Peters et al. 2015, Squires et al.

2020, Jaber et al. 2020, Eberhardt et al. 2012, ...

Latent variables present: Zimmermann et al. 2021, Rosenfeld et al. 2021,

Lippe et al. 2022, Lachapelle et al. 2022, Brehmer et al. 2022, Ahuja et al. 2022,

Seigal et al. 2022, Ahuja et al. 2022, Rosenfeld et al. 2022, Chen et al. 2022,

Varici et al. 2023
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Our setting

(a) No interventions (b) An imperfect intervention (c) A perfect intervention

Linear Gaussian priors with non-linear mixing

Z = AZ + D1/2ϵ, A is a DAG, D diagonal, ϵ ∼ N(0, I )

X = f (Z ), f injective, differentiable

Single-node interventions: For target node ti , change mean and var
and dependence on parents (perfect intervention = no dependence).

Z
(i)
ti = (A(i)Z (i))ti︸ ︷︷ ︸

weights to parents change
0 for perfect

+(D(i))
1/2
ti ,ti︸ ︷︷ ︸

var

(ϵti + η(i)︸︷︷︸
mean

)
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Our main guarantees

Assume we are given interventional datasets with

Linear Gaussian latent variables with non-linear mixing
Perfect single node interventions
All nodes are intervened upon

Theorem (informal)

Under these assumptions we can identify f ,Z, and the causal graph (up to
trivial transformations)

We also extend to imperfect interventions

We show our assumptions are necessary (via counterexamples)
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Comparison to prior works

Closely related prior works:
Paper Setting Our work

[Squires et al. 2023] linear Z , f Non-linear f
[Varici et al. 2023, Jiang et al. 2023] non-linear Z , linear f linear Z , non-linear f

[Ahuja et al. 2022] polynomial f , do-interventions non-linear f , soft interventions

Concurrent works: [Zhang et al. 2023], [Liang et al. 2023], [von
Kügelgen et al. 2023]

Other highlights of our work:

Non-paired data
Unknown targets
Can handle perfect/imperfect/soft interventions
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Experimental methodology

Usual approach: Use Variational Autoencoders to learn encoder
X → Z and decoder Z → X

However, we don’t know intervention targets, so not usable

Our approach: Contrastive learning

Train a deep neural network to distinguish

Observational samples x ∼ X (0) from
Interventional samples x ∼ X (i)

Choose the last layer to model Gaussian log-density

Makes sense because optimal Bayes classifier should look like this
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Experimental methodology

Gaussian log-odds: The log-odds of a sample x ∼ X (i) over x ∼ X (0)

is given by

ln p
(i)
X (x)− ln p

(0)
X (x) = ci −

1

2
λ2
i ((f

−1(x)ti )
2 + η(i)λi · (f −1(x))ti +

1

2
⟨f −1(x), s(i)⟩2

So pick last layer to be (h is deep network intended to be f −1)

gi (x , αi , βi , γi ,w
(i), θ) = αi − βih

2
ti (x , θ) + γihti (x , θ) + ⟨h(x , θ),w (i)⟩2

Loss function:

L =
∑
i∈I

L(i)
CE︸ ︷︷ ︸

Cross-Entropy loss

+ τ1 RNOTEARS(W )︸ ︷︷ ︸
acyclicity regularizer

+ τ2 RREG (W )︸ ︷︷ ︸
sparsity regularizer
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Experiments - Synthetic data

Sample random DAG and non-linear 3-layer MLP f

Setting Method SHD ↓ AUROC ↑ MCC ↑ R2 ↑

Non-linear f Contrastive 1.8 ± 0.5 0.97 ± 0.01 0.97 ± 0.00 0.96 ± 0.00
ER(5, 2) DAG, n = 10k VAE 10.0 ± 0.0 0.50 ± 0.00 0.48 ± 0.03 0.57 ± 0.07
d = 5, d’ = 20 Linear baseline 10.6 ± 1.9 0.48 ± 0.11 0.32 ± 0.03 0.34 ± 0.06

Non-linear f Contrastive 1.6 ± 0.5 1.00 ± 0.00 0.98 ± 0.00 0.97 ± 0.00
ER(10, 2) DAG, n = 10k VAE 18.6 ± 0.9 0.50 ± 0.00 0.62 ± 0.02 0.78 ± 0.01
d = 10, d’ = 100 Linear baseline 28.4 ± 2.1 0.51 ± 0.04 0.17 ± 0.03 0.13 ± 0.03

Metrics:
SHD - Structural Hamming Distance (a measure of distance between graphs)

MCC - Mean Correlation Coefficient (a measure of recovery of latent variables)

Our contrastive method outperforms linear baseline as well as VAE
based approaches.
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Experiments - Image Data

Sample DAG to generate coordinates of balls.

f is an image rendering (non-linear) of balls

Figure: Sample image
with 3 balls

Table: d = 2 ·#balls and nint = 25000 (per environment), nobs = nint · d .

# Balls Method SHD ↓ AUROC ↑ MCC ↑ R2 ↑

2
Contrastive Learning 1.4 ± 0.4 0.95 ± 0.03 0.87 ± 0.03 0.84 ± 0.03
VAE 6.0 ± 0.0 0.50 ± 0.00 0.19 ± 0.06 0.16 ± 0.08

5
Contrastive Learning 2.0 ± 0.3 1.00 ± 0.00 0.94 ± 0.01 0.91 ± 0.01
VAE 18.6 ± 0.9 0.50 ± 0.00 0.31 ± 0.02 0.36 ± 0.03

10
Contrastive Learning 11.0 ± 3.3 0.98 ± 0.02 0.89 ± 0.01 0.83 ± 0.01
VAE 37.2 ± 3.1 0.50 ± 0.00 0.22 ± 0.01 0.33 ± 0.02

13 / 14



Experiments - Image Data

Sample DAG to generate coordinates of balls.

f is an image rendering (non-linear) of balls

Figure: Sample image
with 3 balls

Table: d = 2 ·#balls and nint = 25000 (per environment), nobs = nint · d .

# Balls Method SHD ↓ AUROC ↑ MCC ↑ R2 ↑

2
Contrastive Learning 1.4 ± 0.4 0.95 ± 0.03 0.87 ± 0.03 0.84 ± 0.03
VAE 6.0 ± 0.0 0.50 ± 0.00 0.19 ± 0.06 0.16 ± 0.08

5
Contrastive Learning 2.0 ± 0.3 1.00 ± 0.00 0.94 ± 0.01 0.91 ± 0.01
VAE 18.6 ± 0.9 0.50 ± 0.00 0.31 ± 0.02 0.36 ± 0.03

10
Contrastive Learning 11.0 ± 3.3 0.98 ± 0.02 0.89 ± 0.01 0.83 ± 0.01
VAE 37.2 ± 3.1 0.50 ± 0.00 0.22 ± 0.01 0.33 ± 0.02

13 / 14



Summary

We saw interventional causal representation learning

Identifiable for

Gaussian priors (common assumption)
Non-linear f (completely general)
Single-node intervention on all nodes

Contrastive learning algorithm to learn the model

Future work
Will contrastive algorithm scale?
Non-linear Z, multi-node interventions, etc.

Thank You
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