
End-To-End Latent Variational Diffusion Models for 
Inverse Problems in High Energy Physics

Background

Alexander Shmakov, Kevin Greif, Michael Fenton, Aishik Ghosh, Pierre Baldi, Daniel Whiteson

● Large Hadron Collider (LHC) measures particle collisions which are 
key for answering open questions in particle physics.

● Detector effects introduce bias into results and must be corrected 
for theoretical measurements.

● Unfolding is an inverse problem of converting detector 
observations into more fundamental theoretical quantities.

● We employ state-of-the-art latent diffusion models to tackle this 
generative inverse problem.

● Focus on the semileptonic ttbar decay channel. Map from ATLAS 
detector measurements to fundamental parton momenta.

Latent Variational Diffusion

● Unified Variational Approach We combine latent diffusion models [1] with 
the  variational diffusion framework [2] to create a unified end-to-end 
variational latent diffusion model. 

● Detector Encoder Use permutation invariant transformer architecture [3] 
to embed the variable length detector measurements into informative, 
latent fixed-length representation.

● Parton VAE Use a Gaussian VAE to encode and decode fixed-length parton 
representations of event into abstract latent space.

○ Unlike most VAEs, we embed into a higher dimension than our data!

○ Train VAE simultaneously with other network components to learn a 
fine-tuned latent space for diffusion.

○ Explore several variations for conditioning the VAE.

● Denoising Network Diffusion models learn a target distribution by 
learning to reverse a Gaussian noise diffusion process. Feed in the 
detector embedding and encoded particle to learn a conditional diffusion 
process. We use a continuous variance-preserving diffusion process.
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Results

Experiments

● Generate a training dataset with Madgraph, Pythia, and Delphes 
simulators. We generate 10 million training examples to train all models to 
completion.

○ Detector Observations 4-Momenta of up to 20 hadronic jets and 
leptons. Also measure the missing energy to estimate neutrino.

○ Parton Variables 4-Momenta of intermediate and decay particles for a 
total of 55 dimensions. Generate 5-component representation (M, E, Px, 
Py, Pz) to handle challenging mass component.

● Train several generative learning approaches, building up to the unified 
latent variational diffusion architecture.

○ CVAE Basic conditional VAE with a Gaussian latent prior [4].

○ VDM Variational diffusion model in data-space [2].

○ LDM Latent diffusion model with pre-trained CLIP VAE.

○ CINN Conditional normalizing flow and current SOTA for unfolding [5].

● Evaluate methods using distribution-free metrics between the true parton 
distributions and the generated samples across a 1 million example 
testing dataset.

○ Unified approach performs best; effectiveness of end-to-end training.

○ Latent methods outperform data-space methods.

Distribution and ratios to truth for top quark kinematics across the entire 
testing dataset. Each event was sampled once for each model.

Produce posterior distributions using generative models to examine the 
possible partons configurations for a single event.

1. Lets us measure the confidence of the network in its estimation of the 
parton kinematics.

2. Allows us to test if the network captured symmetries and known physics 
constraints.

a. We notice a bimodal symmetric distribution of the light quarks in the 
event, indicating that the network is learning charge symmetry.

b. Notice that the neutrino eta posterior is also (non-symmetric) bimodal! 
The neutrino is not detected and must be inferred from the missing 
energy. This induces a quadratic constraint with two possible solutions, 
and the network picked up on this constraint!


