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A major challenge in RL: Delayed Reward

AR Delayed Reward:
. Obtaining : positive reward +1
M Otherwise: reward 0
o | o | Lack of immediate feedback
XX
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Al v« 2
A a4 o

Observe

Unstable policy optimization

Reward Redistribution:
Assign proxy rewards according to the contribution of each state-action pair
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Motivation

Equally important for Interpretable Reward Redistribution:

* Computing the contribution of each state-action pair towards delayed rewards?

* Explaining the reasons behind such contribution?

Interpretable
Reward Redistribution

Causal Modeling:
Explain the generation
of Markovian rewards

Aid in Policy Learning



Causal Reformulation of Reward Redistribution

Causality:
causes (which part of the state-action pair) = outcomes (Markovian reward)

\ 4

Timestep

» A graphical example to model the generation of ,

Markovian rewards 7%,
long-term returns R,
by the causal structure over s;, a;, r: and R.

Unobservable &
Goal of Reward Redistribution
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Causal Reformulation of Reward Redistribution

A generative process in MDP:

Sit+1 = f(Ci?s ® 8¢, Cfi—)s ® ay, Es,i,t) Dynamics function
S—7T a—Tr
re = g(C © 8¢, C © ag, €r,t) Markovian reward function
_ I . t-1
R=), 7" 'n Return Equivalence

Causal structure C7:
¢ e {0,134, ¢*" e {0, 1},
CSS € {0’ 1}|s|><|s|, C%S € {O, 1}|a|><|s|’.
€sit and €, ¢: i.i.d random noises , (O: element-wise product

Identifiability Result: Given observed state s;, action a;, long-term return R , under the global
Markov condition and faithfulness assumption, the causal structure €~ , unknown functions,
f, g and the rewards 7; are identifiable.
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Generative Return Decomposition

> How do we estimate the generative model?

Overall objective to optimize parameterized generative model:
Lm = Lrew *+ Lcau t Lreg

Minimize MSE for reward function:

T 2

— -1
Lrew (brew, 9%t 9 = Eep [R= D y71#,

2 T T
_ E t—1 t—14
= [E;p || Yo "0t — Yo Tt
t=1 t=1

t=1

Maximize the likelihood for dynamic function:

|s|
Ldyn (¢dyn' égﬁ» g;lf) = Est,at,st+1~D [_ Z-=1log P(Si,t+1|5t; ag, C°7%, Ca_’s)]

l

Regularizer:
Lreg(dcau) = A4 2 Di(C°77) + A, X Di(C47T)+ A3 Xy Dy j(C57)
+A4 Zi=j Di,j (CS—>S) + /15 Zi=i,j Di,j (Caﬁs) ) where Di (C) = log P(Cl = 1)

[1] Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun Wang, Meng Fang, and Mykola Pechenizkiy. “Interpretable Reward Redistribution in Reinforcement
Learning: A Causal Approach.” NeurlPS 2023. 6



Generative Return Decomposition

> How do we exploit the estimated generative model?

Reward Signal for Oprimizing @ ;:
* Observed delayed rewards X
* Predicted Markovian Rewards

act
v\ jf/
\j\ Input of Policy ®,:

Observation \ e State X

RL Training

 Compact Representation (CR)

Learned
Generative
Model
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Compact Representation (CR)

> a minimally sufficient subset of all state components for policy learning

Timestep >

CR: All the state components influence rewards.

S; ¢ is selected into CR if,
1) CiS—>7" =1:
S; ¢ directly impacts 7 (55 ¢)
S—S __ ST .
2)C;° =6 " =1
S; ¢ indirectly impacts 1344, (53 ¢)
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Experimental Results — Episodic MuloCo

At time step t, the agent is marked as ;.

The observed sparse and delayed rewards are,

{0, ift#T
Ot=

)/t_lrt, lft —_ T
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Experimental Results — Episodic MuloCo
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Visualization of Learned Causal Structure
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Visualization of Learned Causal Structure
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Visualization of Redistributed Rewards
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Figure 5: The visualization of redistributted rewards (blue solid lines) and the
grounded rewards (red dotted lines).
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Thanks!

Paper : https://arxiv.org/abs/2305.18427
Project Page: https://reedzyd.github.io/GenerativeReturnDecomposition/
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