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Relationships Encode Fine-Grained Semantics
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Relationships Encode Fine-Grained Semantics

“Local-to-global” (emergent) correspondences
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Relationships Encode Fine-Grained Semantics

“Local-to-global” (emergent) correspondences
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Global and Local Views




Global and Local Views

* Global view — Most salient region in the image based on ResNet50 feature maps.




Global and Local Views

* Local views — Random crops within the global view.

Local Views



Existing Works — Abstract Aggregation

» Existing works abstractly summarize emergent (local-to-global relationships) into a single n-dimensional vector.

f r

E.g., transformers
Relational Representation

Local Views
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Motivation — Getting Rid of the Abstraction

* Produce graphs as interpretable alternatives to such abstract relational representations.

Local Views
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No Inductive Bias — Complete Graph

* Highly dense input space.

Local Views
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No Inductive Bias — Complete Graph

* Highly dense input space.

Which subgraph is
encoded in the abstract
representation r?

Local Views
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Inductive Bias — Complementarity Graph

* Complementarity leads to sparser
input graphs. - .

Local Views
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Inductive Bias — Complementarity Graph

* Redundant views are merged under :
the action of a GNN. —

Local Views
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Inductive Bias — Complementarity Graph

 Redundant views are merged under
the action of a GNN.

Local Views
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 Redundant views are merged under
the action of a GNN.
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Inductive Bias — Complementarity Graph

 Redundant views are merged under
the action of a GNN.

Local Views
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Inductive Bias — Complementarity Graph

 Redundant views are merged under
the action of a GNN.

Local Views
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What Else Remains?

Local Views
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What Else Remains?

* Unnecessary edges.

Local Views
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What Else Remains?

* Unnecessary edges.
* Noisy views.

Local Views
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Transitivity Recovery Achieves Both

* Recovering transitive relationships that co-occur at instance and class-levels can effectively remove both.

v" Unnecessary edges.
v Noisy views.

» Sufficiency
* Transparency
* Robustness

Local Views
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Transitive Relationships

Instance
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Transitive Relationships

Instance
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Transitive Relationships
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Transitive Relationships
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Recovering Transitive Relationships
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Practically Implementing Transitivity Recovery

Requires:
* Representing classes as graphs

29



Practically Implementing Transitivity Recovery

Requires:
* Representing classes as graphs — online clustering of local view and
learnable edge embeddings.
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Practically Implementing Transitivity Recovery

Requires:

* Representing classes as graphs — online clustering of local view and
learnable edge embeddings.

* Realtime matching of instance and class graphs
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Practically Implementing Transitivity Recovery

Requires:

* Representing classes as graphs — online clustering of local view and
learnable edge embeddings.

* Realtime matching of instance and class graphs — minimizing the
Hausdorff Edit Distance between instance and the class proxy graphs.
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Graph Kernel: Hausdortt Distance

Graph Edit Distance — Expressed in terms of:

* Node Substitution —

Lower bound approximation of Graph Edit Distance

> |

N
AN

Fischer et al., Approximation of graph edit distance based on Hausdorff matching. Pattern Recognition, 2015.
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Graph Kernel: Hausdortt Distance

Graph Edit Distance — Expressed in terms of:

* Node Insertion —_—
* Node Deletion —_

* Node Substitution —

More graph edit operations relative to vanilla Hausdorff

N
AN

RN
>l

Riba et al., Learning graph edit distance by graph neural networks. Pattern Recognition, 2021.
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Transitivity Recovering Decompositions
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Transitivity Recovering Decompositions
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Transitivity Recovering Decompositions
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Transitivity Recovering Decompositions

" Global —p

View f Graph Encoder
Local
Views
Complementarity Graph Semantic Relevance Graph Class Proxy / Concept Graph
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Transitivity Recovering Decompositions

Graph Encoder

Irrelevant Views

# Stop Gradient Complementarity Graphs Semantic Relevance Graphs Class Proxy / Concept Graphs
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Transitivity Recovering Decompositions

f Graph Encoder Learnable Edit Hatésdoilf[)rff

Distance

Cost

areuIwLIgSIg

Irrelevant Views
# Stop Gradient Complementarity Graphs Semantic Relevance Graphs

Class Proxy / Concept Graphs
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Performance — Interpretability

—e— TRD —=— SubgraphX —+— PGExplainer —+— GNNExplainer
Cotton Cultivar FGVC Aircraft iNaturalist
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Performance — Robustness

> 95| g 95 B D =@®- TRD I(Ours) |
© ;5. o= Relational Proxies
g 0 | | — g W DiNo
< 85| | Ll %85
c c
S | lf S 80
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Performance — FGVC

Small Medium Large

Method
Cotton Soy FGVC Aircraft Stanford Cars CUB NA Birds iNaturalist

MaxEnt, NeurIPS’ 18 - - 89.76 93.85 86.54 - -
DBTNet, NeurIPS' 19 - - 91.60 94.50 88.10 - -
StochNorm, NeurlPS’20 4541 38.50 81.79 87.57 79.71 74.94 60.75
MMAL. MMM 21 65.00 47.00 94.70 95.00 89.60 87.10 69.85
FFVT, BMVC’21 57.92 4417 79.80 91.25 91.65 89.42 70.30
CAP, AAAT21 - - 94.90 95.70 91.80 91.00 -
GaRD, CVPR’21 64.80 47.35 94.30 95.10 89.60 88.00 69.90
TransFG, AAAI'22 45.84 38.67 80.59 94.80 91.70 90.80 71.70
Relational Proxies, NeurlPS’22 69.81 51.20 95.25 96.30 92.00 91.20 72.15

TRD (Ours) 70,90 £0.22  52.15+0.12 95.60 = 0.08 96.35+0.03 9210 +0.04 91.45+0.12 7227 £0.05
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Qualitative Results

mCape Glossy Starling

Z 2
2 - <
'§ / %s / ‘?
2 \\0.7 \
Q\y \ < '
\O 046 —
Instance Graph Class-Proxy Graph Instance Graph Class-Proxy Graph
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Causal Interventions

25, %, ‘_ pa—
g 061 \e/’ 051~ \: oee/a
Instance Graph Instance Graph Class-Proxy Graph
7 10 20 30 40 50

Relational Proxies 93.22 87.12 79.35 70.99 63.60
TRD (Ours) 9490 91.54 8280 76.35 70.55

n: Percentage of local-views from a different class

45



Conclusion

* Abstract emergent relationships can be expressed in terms of graphs.



Conclusion

* Transitivity Recovering Decompositions (TRD) is a provably efficient approach to
achieve the same.



Conclusion

* TRD encodes the complete relational semantics while being interpretable.



Conclusion

* Recovering transitive relationships inherently filters out noisy views.



Transitivity Recovering Decompositions

Get in touch:
Abhra Chaudhuri
acll5]1@exeter.ac.uk

https://arxiv.org/abs/2310.15999 https://github.com/abhrac/trd
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