
Abhra Chaudhuri Anjan DuttaMassimiliano Mancini Zeynep Akata

Transitivity Recovering Decompositions:
Interpretable and Robust Fine-Grained Relationships

2023



Relationships Encode Fine-Grained Semantics

2



Relationships Encode Fine-Grained Semantics

3

Caron et al. “Emerging Properties in Self-Supervised Vision Transformers” (aka, DINO), ICCV 2021.
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Caron et al. “Emerging Properties in Self-Supervised Vision Transformers” (aka, DINO), ICCV 2021.



Relationships Encode Fine-Grained Semantics

6

Chaudhuri et al. “Relational Proxies: Emergent Relationships as Fine-Grained Discriminators”, NeurIPS 2022.
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Global View

• Global view – Most salient region in the image based on ResNet50 feature maps.
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Local Views

Global View

• Local views – Random crops within the global view.



Existing Works – Abstract Aggregation
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𝑓

E.g., transformers
Relational Representation

Local Views

Global View

• Existing works abstractly summarize emergent (local-to-global relationships) into a single 𝑛-dimensional vector.

𝑟



Motivation – Getting Rid of the Abstraction
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Local Views

Global View

• Produce graphs as interpretable alternatives to such abstract relational representations.
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Local Views

Global View

• Highly dense input space.
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Local Views

Global View

• Highly dense input space.
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Which subgraph is 
encoded in the abstract 
representation 𝑟? 



Inductive Bias – Complementarity Graph

14

Local Views

Global View

• Complementarity leads to sparser 
input graphs.
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• Redundant views are merged under 
the action of a GNN.

Local Views

Global View
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• Redundant views are merged under 
the action of a GNN.

Local Views

Global View



What Else Remains?

20

Local Views

Global View
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Local Views

Global View

• Unnecessary edges.
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Local Views

Global View

• Unnecessary edges.
• Noisy views.



Transitivity Recovery Achieves Both
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Local Views

Global View

• Recovering transitive relationships that co-occur at instance and class-levels can effectively remove both.

✓ Unnecessary edges.
✓ Noisy views.

• Sufficiency
• Transparency
• Robustness
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Practically Implementing Transitivity Recovery
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Requires:
• Representing classes as graphs
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Requires:
• Representing classes as graphs – online clustering of local view and 

learnable edge embeddings.
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Practically Implementing Transitivity Recovery
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Requires:
• Representing classes as graphs – online clustering of local view and 

learnable edge embeddings.
• Realtime matching of instance and class graphs – minimizing the 

Hausdorff Edit Distance between instance and the class proxy graphs.



Graph Kernel: Hausdorff Distance 

Graph Edit Distance – Expressed in terms of:

• Node Insertion

• Node Deletion

• Node Substitution

• Edge Insertion

• Edge Deletion

• Edge Substitution

Lower bound approximation of Graph Edit Distance

Fischer et al., Approximation of graph edit distance based on Hausdorff matching. Pattern Recognition, 2015.
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Graph Kernel: Hausdorff Distance 

Graph Edit Distance – Expressed in terms of:

• Node Insertion

• Node Deletion

• Node Substitution

• Edge Insertion

• Edge Deletion

• Edge Substitution

More graph edit operations relative to vanilla Hausdorff

Riba et al., Learning graph edit distance by graph neural networks. Pattern Recognition, 2021.
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Complementarity Graph
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Semantic Relevance Graph
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Semantic Relevance Graph Class Proxy / Concept Graph
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Complementarity Graphs

Graph Encoder

Semantic Relevance Graphs

Local 

Views

Global 

View

Stop Gradient

Irrelevant Views
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Class Proxy / Concept Graphs
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Class Proxy / Concept Graphs



Performance – Interpretability

41



Performance – Robustness
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Performance – FGVC
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Qualitative Results
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Instance Graph Class-Proxy Graph Instance Graph Class-Proxy Graph



Causal Interventions

45

Instance Graph Instance Graph Class-Proxy Graph

η: Percentage of local-views from a different class



• Abstract emergent relationships can be expressed in terms of graphs.
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• Abstract emergent relationships can be expressed in terms of graphs.

• Transitivity Recovering Decompositions (TRD) is a provably efficient approach to 
achieve the same.

• TRD encodes the complete relational semantics while being interpretable.

• Recovering transitive relationships inherently filters out noisy views.

Conclusion
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https://arxiv.org/abs/2310.15999 https://github.com/abhrac/trd
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