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Background

Covariate shift is a phenomenon that commonly occurs in machine learning, where the
distribution of input features (covariates) changes between the source (or training) and
target (or test) data, while the conditional distribution of output values given covariates
remains unchanged.

Xingdong Feng, Xin He, Caixing Wang, Chao Wang, Jingnan Zhang ( Reported by Caixing Wang (SUFE, China))Kernel learning under covariate shift 2 / 13



Motivation

The prediction performance can be largely degraded since the predictive function has
not been trained on data that accurately represents the target environment.
Compared to the well-studied supervised learning without such a distribution
mismatch, there still exists some gap in both theoretically and numerically
understanding the influence of the covariate shift under various kernel-based
learning problems.
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Our contribution

We propose a unified analysis of the kernel-based methods under covariate shift, which
provides an insightful understanding of the influences of covariate shift on the
kernel-based methods both theoretically and numerically.

Theoretically, we show that the unweighted estimator achieves the optimal learning
rates under the uniformly bounded case. Yet, the unweighted estimator is
sub-optimal under the bounded second moment case. Then, we construct a
weighted estimator by using an appropriate truncated ratio, which again attains a
sharp convergence rate.
Numerous experiments on synthetic data and multi-source real data with various loss
functions confirm our theoretical findings.
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Method

Classical kernel-based nonparametric estimation

f̂ := argmin
f∈HK

1
n

n∑
i=1

L
(
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S
i )
)
+ λ‖f‖2K

Importance ratio weighted (IRW) kernel-based nonparametric estimation

f̃φ := argmin
f∈HK

1
n

n∑
i=1

φ(xS
i )L
(
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i , f (x
S
i )
)
+ λ‖f‖2K

where φ(x) = ρT
x (x)/ρS

x (x) is the importance ratio measuring the discrepancy
between distributions
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Method

Two types of importance ratio cases

1 φ(x) is α-uniformly bounded that is supx∈X φ(x) ≤ α, for some positive constant α;

2 φ(x)’s second moment is bounded that is Ex∼S[φ
2(x)] ≤ β2, for some constant β2 ≥ 1.

Xingdong Feng, Xin He, Caixing Wang, Chao Wang, Jingnan Zhang ( Reported by Caixing Wang (SUFE, China))Kernel learning under covariate shift 6 / 13



Theory

Theorem 1 (Convergence rate of f̂ for case 1)

Under Assumptions 1-2, if the importance ratio is α-uniformly bounded, let λ > c0δ
2
n/4

with δn being the smallest positive solution to C
√
log nR(

√
αδ) ≤ c0δ

2/2, then for some
constant c1 > 0, with probability at least 1− n−c1 , we have

‖f̂ − f ∗‖2T ≤ α
(
δ2

n + 2c−1
0 λ

)
. (1)

Furthermore, based on (1), we have

EL
T (̂f )− EL

T (f
∗) ≤ cLα

(
δ2

n + 2c−1
0 λ

)1/2
. (2)
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Theory

Theorem 2 (Convergence rate of f̂ for case 2)

Under Assumptions 1-2, if the importance ratio satisfies that Ex∼S[φ
2(x)] ≤ β2, let

λ > c0δ
2
n/4 with δn being the smallest positive solution to

C
√
log nR((c−1

0 cL
√
β2δ)1/2) ≤ c0δ

2/2, then for some constant c2 > 0, with probability at
least 1− n−c2 , we have

‖f̂ − f ∗‖2T ≤ c−1
0 cL

√
β2
(
δ2

n + 2c−1
0 λ

)1/2
. (3)

Furthermore, based on (2), we have

EL
T (̂f )− EL

T (f
∗) ≤ cL

√
β2
(
δ2

n + 2c−1
0 λ

)1/2
. (4)
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Theory

Theorem 3 (Convergence rate of f̂ φ for case 2)

Under Assumptions 1-2, if the importance ratio satisfies that Ex∼S[φ
2(x)] ≤ β2, let

λ > c0δ
2
n/4 with δn being the smallest positive solution to C

√
β2 log nR(δ) ≤ c0δ

2/2, and
set the truncation level γn =

√
nβ2, then for some constant c3 > 0, with probability at least

1− n−c3 , we have

‖f̂φ − f ∗‖2T ≤ δ2
n + 2c−1

0 λ. (5)

Furthermore, based on (5), we have

EL
T (̂f

φ)− EL
T (f
∗) ≤ 1

2
c0δ

2
n + 2λ. (6)
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Examples

Table 1: Established convergence rates under different cases

Kernel class
Uniformly bounded case Moment bounded case

Unweighted estimator TIRW estimator Unweighted estimator TIRW estimator

Finite rank D OP(
α2D log n

n ) OP(
αD log2 n

n ) OP((
β4D log n

n )1/3) OP(
β2D log2 n

n )

Polynomial decay OP((
α2 log n

n )
2r

2r+1 ) OP((
α log2 n

n )
2r

2r+1 ) OP((
β4 log n

n )
2r

6r+1 ) OP((
β2 log2 n

n )
2r

2r+1 )

Exponential decay OP(
α2 log2 n

n ) OP(
α log3 n

n ) OP((
β4 log2 n

n )1/3) OP(
β2 log3 n

n )
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Simulation
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Simulation
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