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Background

Covariate shift is a phenomenon that commonly occurs in machine learning, where the
distribution of input features (covariates) changes between the source (or training) and
target (or test) data, while the conditional distribution of output values given covariates
remains unchanged.
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Figure 1: (a) The probability density functions of normal distributions with p; = 0, o2 = 0.4 that the source
data is driven from and 1 = 1.5,02 = 0.6 that the target data is driven from, respectively; (b) the learned
function trained by using the source data and the true mean regression function. Note that the considered example
serves as an illustration that satisfies case (ii) in Section23.
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Motivation

@ The prediction performance can be largely degraded since the predictive function has
not been trained on data that accurately represents the target environment.

@ Compared to the well-studied supervised learning without such a distribution
mismatch, there still exists some gap in both theoretically and numerically
understanding the influence of the covariate shift under various kernel-based
learning problems.
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Our contribution

We propose a unified analysis of the kernel-based methods under covariate shift, which
provides an insightful understanding of the influences of covariate shift on the
kernel-based methods both theoretically and numerically.

@ Theoretically, we show that the unweighted estimator achieves the optimal learning
rates under the uniformly bounded case. Yet, the unweighted estimator is
sub-optimal under the bounded second moment case. Then, we construct a
weighted estimator by using an appropriate truncated ratio, which again attains a
sharp convergence rate.

@ Numerous experiments on synthetic data and multi-source real data with various loss
functions confirm our theoretical findings.
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Method

@ Classical kernel-based nonparametric estimation
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@ Importance ratio weighted (IRW) kernel-based nonparametric estimation

o —argmm*qu Ly, f(xP)) + Allfli%
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where 6(x) = pJ (x)/pg (x) is the importance ratio measuring the discrepancy
between distributions
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Method

@ Two types of importance ratio cases

@ ¢(x) is a-uniformly bounded that is supy. » ¢(X) < «, for some positive constant «;

@ ¢(x)’s second moment is bounded that is Exs[¢?(x)] < 32, for some constant 52 > 1.
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Theory

Theorem 1 (Convergence rate of f for case 1)

Under Assumptions 1-2, if the importance ratio is a-uniformly bounded, let A > ¢y62 /4
with &, being the smallest positive solution to C+/log nR(y/ad) < ¢y62/2, then for some
constant ¢y > 0, with probability at least 1 — n—¢', we have

If - |2 < a (5% + 200_1>\> . (1)

Furthermore, based on (1), we have

~ 1/2
EL(F) — EL(F) < qra (5,2, + 2051A) .
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Theory

Theorem 2 (Convergence rate of f for case 2)

Under Assumptions 1-2, if the importance ratio satisfies that Ey..s[¢?(x)] < (2, let
A > Cp62/4 with §, being the smallest positive solution to

CV/log nR((cy 'cL\/B26)1/2) < cpé?/2, then for some constant ¢, > 0, with probability at
least 1 — n~“, we have

_ 1/2
IF— )12 < c5 'eL /2 (5§+2c0u) . 3)

Furthermore, based on (2), we have

EF(P) — EL(F) < CL\/—(52+200_1)\) v (4)
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Theory

Theorem 3 (Convergence rate of ¢ for case 2)

Under Assumptions 1-2, if the importance ratio satisfies that Ey..s[¢?(x)] < (2, let
A > ¢p62 /4 with §, being the smallest positive solution to C+//32 log nR(5) < ¢p62/2, and

set the truncation level v, = \/n/32, then for some constant ¢3 > 0, with probability at least
1 — n=%, we have

7% — £[13 < 62 + 2¢5 "\ (5)

Furthermore, based on (5), we have

—

EL(F?) — 5(F) < éco(s? + 2\
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Examples

Table 1: Established convergence rates under different cases

Uniformly bounded case Moment bounded case
Kernel class . . . : . .
Unweighted estimator ~ TIRW estimator ~ Unweighted estimator =~ TIRW estimator
Finite rank D Op(22Dlsn) Op (2Dt n) Op((£Blosny1/3) Op(22Dlog’ )
Polynomial decay Op((22lemn) a7t ) Op (o8 n) ot ) Op((ZHleany sty ) Op (et atiy)
Exponential decay o) a?log? n o) alog®n o) B*10g? n\1/3 o) BPlog®n
p(“—2") p(*22-7) p((5—)""°) P(—")
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Simulation
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Figure 2: Averaged MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively. Note that in (a) and (d), the curves are plotted with respect to log;, A w1th
n = 500, m = 1000; in (b) and (e) the curves are plotted with respect to n with fixed m = 1000, A = 1074

() and (f), the curves are plotted with respect to m with fixed n = 500, A = 10™%.
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Simulation

— Unweignisd kR — Uneiged KOR —o Unueigned KaR
— TIRW KOR (Estmaed weigh) . —e— TIRW KOR (Estmated weight) 03s —+— TIRW KQR (Estmated weight)

08 — TIRW KGR (T wegh) ) —— TIRW KQR (e weight) = TIRW KGR (Tre weigh)
08 01 02s
I ] 020 $

R Qe

SE

=E== e e w— am
0z 005 — i, G
— oos —————
0o o os0
s o w0 20 %0 300 w0 e s0 xo w0 w0 %00
n m
(b) (©
— Unvwihied KaR — Unighod KOR — = Unuoignid KaR
0ss — TIRW KGR (Esimaes weghs o TIRW KOR (Esmated woig) ors £ TIRW KGR (Estmated wogh)
— TIRWKQR (Tue wegh) o1 o TIRW KOR (Trua wagh) e - TIRWKOR (T i)

Empirical excess fisk
E

Emm.‘m.‘sk
7
——

i E == =
\“‘ s Q\\/

H

Bl s w0 w0 20 0 w00 so 0 0 w00 s00 W00 %00
n m

log1oA

@ © ®

Figure 3: Averaged MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively. Note that in (a) and (d), the curves are plotted with respect to log;, A with
n = 500, m = 1000; in (b) and (e) the curves are plotted with respect to n with fixed m = 1000, A = 10~%;in
(c) and (f), the curves are plotted with respect to m with fixed n = 500, A = 10™%.
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