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TL,DW

* Current hierarchical Gaussian process models learn one
of the following:
 Latent mappings — reduce dimensionality (DKL/CDGP);
* Lengthscale fields — easier to interpret (DNSGP);

* We...

* Propose the thin and deep Gaussian process (TDGP), a new
deep GP method that learns both, increasing its
interpretability over previous proposals!

 Show that it has a close relation to the more standard DGP but
enables the learning of lengthscales.

* Demonstrate its performance in synthetic, genericand 7 R
geospatial datasets. E,.Q 25
[t
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* For a kernel k, a Gaussian process
f(:) ~ GP(0, k) is a distribution over
functions.
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Stationary kernel

k(a,b) = k(0,b — a)
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Isotropic kernel
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Isotropic kernel

* A kernel is isotropic stationary with lengthscale A if:
k(a,b) = k(a—b,0) [Stationarity]
= mx((a — b)TA™1(a — b)) [Isotropic]
= 1 ((Wa — Wb)(Wa — Wh)T)
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* For example, k(a,b) = O'fz exp [— %Zi (a‘ﬂb‘) ], then we

have m, (d?) = of exp [—%dz] with diagonal A;; = ¢;.




Understanding lengthscales

* Lengthscales control the spatial y =
variance of a Gaussian process; N z

* For example, with the
squared exponential kernel: a e
1 (a = b) 3
ksg(a,b) = exp|—= ~

then,

df ., 0 1 B e
x ~ 9P 0% ) 1




Non-stationary kernel

k(a,b) # k(0,b — a)
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Non-stationarity from stationary kernels

Compositional kernels

* Let 7(-) be an arbitrary warping function:

k-(a,b) = k(r(a),r(b))
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Non-stationarity from stationary kernels

Compositional kernels

* Let 7(-) be an arbitrary warping function:
k:(a,b) = k(z(a),7(b))

« If 7(x) = €71 - x is a linear function, then k; is stationary with
lengthscale £.

* If T(x) is a parametric non-linear function, this corresponds to the
deep kernel learning model. [Wilson et al., 2016]

o If 7(x) ~ GP(m, k"), this corresponds to the traditional
compositional deep Gaussian process.
[Damianou & Lawrence, 2013; Salimbeni & Deisenroth, 2017a]




Non-stationarity from stationary kernels

Lengthscale mixture kernels

* Let A(-) be a lengthscale field:

—1
JJ A@IADT < oyt [A<a) . A(b)] o b)>

|A(a) + A(D)




Non-stationarity from stationary kernels

Lengthscale mixture kernels

* Let A(-) be a lengthscale field:

-1
JJ 4(@)V14(®) <(a byt [Ma) ! ‘“b)] (a - b>>

[A(a) + AD)| K

* If k is squared exponential, this is the Gibbs’ kernel. [Gibbs, 1997]




Non-stationarity from stationary kernels

Lengthscale mixture kernels

* Let A(-) be a lengthscale field:

-1
JJ 4(@)V14(®) <(a byt [Ma) ! ‘“b)] (a - b>>

[A(a) + AD)| K

* If k is squared exponential, this is the Gibbs’ kernel. [Gibbs, 1997]

o If, W(A(-)) ~ GP(0, k), for a warping function w(-), we obtain a
deep non-stationary model.
[Paciorek & Schervish, 2013; Salimbeni & Deisenroth, 2017b]




Our proposal

Kernel construction

* We choose a hybrid approach:
k(W(a) -a,W(b)-b)
 Defines a latent space 7(x) = W(x) - x.
e Induces a lengthscale field, A(x) = [W(x)W (x)T]~1
D

/CDGP unit: AE TDGP unit:

s~
~
r 4
wiL
\\ ’

!’-..\ 1’-..‘ "-‘\

w




Our proposal

* As a deep GP, inference must be approximate; Extending the approach of
Titsias & Lazaro-Gredilla (2013), our variational distribution for a two-layer
model is:
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Our proposal

* As a deep GP, inference must be approximate; Extending the approach of
Titsias & Lazaro-Gredilla (2013), our variational distribution for a two-layer

model is:
Q,D

p(f |WNQ | py, Zyy) 1_[ P(qulqu)N (qu | Hvgqr qud)

q,d
* Additionally, to compute the ELBO, the W-statistics need to be computed:

W] = jk(W(xi) - x;,2;) q(W) dW

So, we restrict k(a, b) to the squared exponential kernel and obtain closed
form solutions to W-statistics.

* As an alternative, doubly stochastic inference doesn’t require these assumptions.
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Bathymetry case study

Guyana
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* As a case-study, we also apply TDGP to -
the GEBCO gridded bathymetry S L
dataset. It contains a global terrain : gl
model (elevation data) for ocean and S,

land. Ground truth

* Asan example of a non-stationary
task, we selected an especially
challenging subset of the data
covering the Andes mountain range,

¢ : o. ‘ b
ocean, and land. o,t.’..} °"~a?‘ : -&t“ S -‘:‘
e * &-0. o a ° ,NL, ....0‘ —5000
° & e
* This region was subsampled to 1,000 ";."2.'."','? s -- X Lo %, .

—20 12 P a 2 2% !.o‘
-70

points from this region and compared
with the methods via five-fold cross-
validation.

Google; Data SIO, NOAA, U.S. Navy, NGA, GEBE®; Eandsat / Copernicus; INEGII; BCAO



Bathymetry case study
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As a case-study, we also apply TDGP to P
the GEBCO gridded bathymetry  Eciador <
dataset. It contains a global terrain s g

model (elevation data) for ocean and
land.

* Asan example of a non-stationary
task, we selected an especially
challenging subset of the data
covering the Andes mountain range,
ocean, and land.

* This region was subsampled to 1,000
points from this region and compared
with the methods via five-fold cross-
validation.

* We compare our method against
popular inference methods of the
previous alternatives.



Bathymetry case study

Results

Sparse GP Deep Kernel Learning Compositional DGP Deeply Nonstationary GP
[Titsias, 2009] [Wilson et al., 2016] [Salimbeni & Deisenroth, 2017a] [Salimbeni & Deisenroth, 2017b]
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Bathymetry case study

Results — Bathymetry (m)
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Bathymetry case study

Results — Latent space [T(x)]
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Bathymetry case study

Sparse GP

Deep Kernel Learning

Deeply Nonstationary GP

-0.13+£0.09 | 1.19%£0.63

3.85+0.92 | 0.59%0.31
-0.44+£0.12 | 0.83%£0.56
-0.31+0.12 | 1.12+£0.75
-0.53+0.10 | 0.66+0.43
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