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TL;DW

• Current hierarchical Gaussian process models learn one 
of the following:​
• Latent mappings – reduce dimensionality (DKL/CDGP);​

• Lengthscale fields – easier to interpret (DNSGP);​

• We…​
• Propose the thin and deep Gaussian process (TDGP), a new 

deep GP method that learns both, increasing its 
interpretability over previous proposals!​

• Show that it has a close relation to the more standard DGP but 
enables the learning of lengthscales.​

• Demonstrate its performance in synthetic, generic and 
geospatial datasets.
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Isotropic kernel

• A kernel is isotropic stationary with lengthscale 𝚫 if:

𝑘 𝑎, 𝑏 = 𝑘 𝑎 − 𝑏, 0

= 𝜋𝑘 𝑎 − 𝑏 𝑇𝚫−1 𝑎 − 𝑏  [Isotropic]

= 𝜋𝑘 𝑾𝑎 − 𝑾𝑏 𝑾𝑎 − 𝑾𝑏 𝑇

• For example, 𝑘 𝑎, 𝑏 = 𝜎𝑓
2 exp −

1

2
σ𝑖

𝑎𝑖−𝑏𝑖
2

ℓ𝑖
2 , then we 

have 𝜋𝑘 𝑑2 = 𝜎𝑓
2 exp −

1

2
𝑑2  with diagonal 𝚫𝑖𝑖 = ℓ𝑖.

[Stationarity]



Understanding lengthscales

• Lengthscales control the spatial 
variance of a Gaussian process;

• For example, with the
squared exponential kernel:

𝑘SE 𝑎, 𝑏 = exp −
1

2

𝑎 − 𝑏 2

ℓ2
,

then,
df

d𝑥
 ~ 𝒢𝒫 0,

1

ℓ2
.



Non-stationary kernel

𝑘 𝑎, 𝑏 ≠ 𝑘 0, 𝑏 − 𝑎
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• Let 𝜏 ⋅  be an arbitrary warping function:
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• If 𝜏 𝑥 = ℓ−1 ⋅ 𝑥 is a linear function, then 𝑘𝜏 is stationary with 
lengthscale ℓ.

• If 𝜏 𝑥  is a parametric non-linear function, this corresponds to the 
deep kernel learning model. [Wilson et al., 2016]

• If 𝜏 𝑥  ~ 𝒢𝒫 𝑚, 𝑘′ , this corresponds to the traditional 
compositional deep Gaussian process.
[Damianou & Lawrence, 2013; Salimbeni & Deisenroth, 2017a]
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Non-stationarity from stationary kernels

• Let 𝚫 ⋅  be a lengthscale field:

𝜟 𝑎 𝜟 𝑏

𝜟 𝑎 + 𝜟 𝑏
𝜋𝑘 𝑎 − 𝑏 T

𝜟 𝑎 + 𝜟 𝑏

2

−1

𝑎 − 𝑏

• If 𝑘 is squared exponential, this is the Gibbs’ kernel. [Gibbs, 1997]

• If, 𝑤 𝚫 ⋅  ~ 𝒢𝒫 0, 𝑘 , for a warping function 𝑤 ⋅ , we obtain a 

deep non-stationary model.
[Paciorek & Schervish, 2013; Salimbeni & Deisenroth, 2017b]

Lengthscale mixture kernels



Our proposal

• We choose a hybrid approach:

𝑘 𝑾 𝑎 ⋅ 𝑎, 𝑾 𝑏 ⋅ 𝑏 

• Defines a latent space 𝜏 𝑥 = 𝑾 𝑥 ⋅ 𝑥.

• Induces a lengthscale field, 𝚫 𝑥 = 𝑾 𝑥 𝑾 𝑥 𝑇 −𝟏

Kernel construction
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So, we restrict 𝑘 𝑎, 𝑏  to the squared exponential kernel and obtain closed 
form solutions to Ψ-statistics.

• As an alternative, doubly stochastic inference doesn’t require these assumptions.
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Bathymetry case study

Ground truth

• As a case-study, we also apply TDGP to 
the GEBCO gridded bathymetry 
dataset. It contains a global terrain 
model (elevation data) for ocean and 
land.

• As an example of a non-stationary 
task, we selected an especially 
challenging subset of the data 
covering the Andes mountain range, 
ocean, and land.

• This region was subsampled to 1,000 
points from this region and compared 
with the methods via five-fold cross-
validation.

• We compare our method against 
popular inference methods of the 
previous alternatives.
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Results – Lengthscale field [tr𝚫 x ]
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Bathymetry case study

Results – Latent space [𝝉 x ]
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Bathymetry case study

Results – Test metrics

NLPD MRAE

Sparse GP -0.13 ± 0.09 1.19 ± 0.63

Deep Kernel Learning -3.85 ± 0.92 0.59 ± 0.31

Compositional DGP -0.44 ± 0.12 0.83 ± 0.56

Deeply Nonstationary GP -0.31 ± 0.12 1.12 ± 0.75

TDGP (Ours) -0.53 ± 0.10 0.66 ± 0.43
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Thank you!
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