LLLLLLL

............
LMU || zavessi ~
MUNICH

Marcus Munzer, Chris Bard

A Curriculum-Training-Based Strategy
for Distributing Collocation Points
during Physics-Informed Neural Network

Training
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Reconstruct plasma environment around spacecraft trajectory
*  PINN predicts 2D MHD solutions [J,,.., given partial linear samples of the original data

*  Approximated solution follows both a physical constraint (1) and a boundary data constraint (2)
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for N, coordinates of (z,y.t) in space-time
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Curriculum Learning
* Human-like learning
« Start easy

+ Stepwise increase difficulty
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Approaches

Schedule collocation point distributions:

—> Cuboid: learn evolution over time by expanding a cuboid
that covers the whole spatial domain over the time axis
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—> Cylinder: easier predictions close to spacecraft trajectory;
expand collocation point distribution in concentric bubbles
around the trajectory data
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Compare to arandomly sampling baseline on three datasets: a750

1. An MHD reconnection benchmark (GEM)

2. A2DRi

3. An MHD vortex designed to study turbulence (OT)
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Conclusion:

Scheduling the collocation point distributions
significantly enhances PINN MHD reconstruction,
simultaneously boosting accuracy and reducing
convergence speed. However, we note that results

depend on the scenario and the models® initializations.
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