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Introduction:

ReferencesWork summary:

● A program to convert Feynman diagrams into graph valued data 

● Demonstrated the use of GNNs in QED. 

● Initiated testing on QCD for momentum dependence decoding

● Tested the GAT layer for use beyond experimental analysis in physics.
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Preliminary testing on QCD:

This work finds a new application of geometric deep learning, beyond experimental
analysis [1], on Feynman diagrams to make accurate and fast matrix element
predictions with the potential to be used in analysis of quantum field theory. This
research makes use of a natural graph representation of Feynman diagrams and uses
the graph attention layer to makes matrix element predictions to 1 significant figure
accuracy above 90% of the time. Peak performance was achieved in making
predictions to 3 significant figure accuracy over 10% of the time with less than 200
epochs of training, serving as a proof of concept on which future works can build upon
for better performance. Finally, a procedure is suggested, to use the network to make
advancements in quantum field theory by constructing Feynman diagrams with
effective particles that represent non-perturbative calculations. The hope is that upon
fully learning the Feynman rules, the network can be used to reverse engineer a graph
that generate the correct matrix elements when passed through the GNN and can be
interpreted as physical processes.

Schematic of the natural graph representation of Feynman diagrams. Each element of the edge
embedding encodes the properties of the particle.

Each node encodes whether the particle is an initial state, virtual, or final state particle.

Architecture:

The network architecture consists of a Graph Attention Layer (GAT) [2], whose
node embeddings are pooled to make a graph representation. Since QED
Feynman rules are independent of momenta, the momentum is concatenated
after producing the graph representation. Finally, the representation vector is
passed to a fully connect network (FCN) to predict the matrix element and
compute the loss.

Mini-batching process for the graphs. No additional edges constructed so that the attention
mechanism treats the graphs as disconnected.

Testing the performance of the GNN on a
𝑢𝑢ത → 𝑡𝑡̅ s-channel via gluon propagator.
The mass of the top quark means that
the matrix elements are no longer
momentum independent and so different
momentum concatenations produce
different targets.

Extending dataset to tree-level QED with 
electrons and muons:

Initial testing of QCD to probe the 

FCN’s ability to distinguish 

momentum dependence from the 

graph representation. Performance 

drops but can clearly see the generic 

shape emerge. Improvements in 

testing are needed but this 

experiment illustrates the ability to 

create momentum dependent 

Feynman rules. 

The same predictions for the 𝑒ି𝑒ା → 𝜇ି𝜇ା and 𝑒ି𝑒ା → 𝑒ି𝑒ା  processes again but this time
after having been trained on a larger dataset involving other processes like 𝜇ି𝜇ା → 𝜇ି𝜇ା.

Main experiment on training on a larger dataset. This dataset contains all tree-level
Feynman diagrams involving muons and electrons. Performance indicates the potential
to fit a wide range of matrix elements. Requires some improvements in implementation
to create better fits. To 1 decimal place, accuracy of 96.75% was reached with an
overall test L1 test loss of 0.015 on a normalized target in the range [0,1].

𝒆ି𝒆ା → 𝝁ି𝝁ା and 𝒆ି𝒆ା → 𝒆ି𝒆ା results:
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The predictions for the 𝑒ି𝑒ା → 𝜇ି𝜇ା (left) and 𝑒ି𝑒ା → 𝑒ି𝑒ା (right) processes. An initial
benchmark to test the expected performance of the network when the dataset is increased.

This is the first experiment on electron-positron to muon-antimuon s-channel
diagrams; and the two Bhabha electron-positron to electron-positron s and t-
channel diagrams, batched into one graph with ultra-relativistic matrix element.
This exhibits the models performance at distinguishing between graphs. The
predictions are good with a small discrepancy for the muon matrix element at
large angles. This serves as a baseline for performance.

Outline of the architecture of the network. The GAT and hidden linear layers create new node
embeddings. The embeddings are pooled to create a graph representation. Finally
momentum is concatenated before being passed to an FCN to get a matrix element
prediction. Back propagation is conducted with the loss.


