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Instrumental variables are useful when would like to measure
a causal effect but cannot perform an experiment.
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Two Critical Assumptions:

Relevance Assumption: variation in the instrument Z
leads to meaningful variation in the treatment T
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Two Critical Assumptions:

Relevance Assumption: variation in the instrument Z
leads to meaningful variation in the treatment T

Exclusion Restriction: the only source of variation in Y from Z
through T
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Traditional Instrumental Variable Analysis

coeff for ¢ \
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Traditional Instrumental Variable Analysis

Exclusion Restriction

Since ¥ contains information about Z through ¢,
Corr(y — ¥, Z) should be 0
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Prediction Validity

 replaces correlation with prediction

Corr(y — ¥, Z) should be 0
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Prediction Validity

* replaces correlation with prediction

Cﬁlo_’vrr(y)j ¥, 7Z) should be 0

Can we predict y — y using Z and X
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Prediction Validity

Relevance Assumption: variation in Z leads to variation in T
Q Can we predict t using X and Z better than X alone?
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In the paper

* Introduce prediction validity

* New 2-stage & 1-stage prediction validity instrumental
variable analysis

 Feasibility proofs for different model forms
* An application to climate policy perspectives
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