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Instrumental variables are useful when would like to measure 
a causal effect but cannot perform an experiment.
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Instrumental variables are useful when would like to measure 
a causal effect but cannot perform an experiment.



Two Critical Assumptions:

Relevance Assumption: variation in the instrument Z 
leads to meaningful variation in the treatment T



Two Critical Assumptions:

Relevance Assumption: variation in the instrument Z 
leads to meaningful variation in the treatment T

Exclusion Restriction: the only source of variation in Y from Z 
through T



Traditional Instrumental Variable Analysis
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Covariates X

𝑡̂ is linear in X and Z -𝑦 is linear in X and 𝑡̂

Exclusion Restriction

Corr(𝑦 − -𝑦, Z) should be 0
Since -𝑦 contains information about Z through 𝑡̂,   



Prediction Validity

• replaces correlation with prediction 
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• replaces correlation with prediction 

Corr(𝑦 − -𝑦, Z) should be 0

Can we predict 𝑦 − -𝑦 using Z and 𝑋
better than we can predict 𝑦 − -𝑦 with 𝟎?No!

Prediction Validity Exclusion Restriction

Prediction Validity



Can we predict 𝑡 using 𝑋 and Z better than 𝑋 alone?
Yes!

Prediction Validity Relevance Assumption!

Relevance Assumption: variation in Z leads to variation in T

Prediction Validity
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In the paper
• Introduce prediction validity
• New 2-stage & 1-stage prediction validity instrumental 

variable analysis
• Feasibility proofs for different model forms
• An application to climate policy perspectives
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