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●   Adversarial attacks typically aim to degrade the performance of a machine learning model.

●   Following the same principles, we can deliberately influence the fairness of a model’s output.

●   Mehrabi et al. [1] proposed two novel data poisoning attacks, which we tried to replicate.

○   The Anchoring Attack (AA) places poisoned samples s.t. the decision boundary is skewed.

○   The Influence Attack on Fairness (IAF) performs gradient ascent on an adversarial fairness loss.
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Introduction
Using the principal idea behind IAF, we can inverse the bias present in a dataset. 

Steps:

i.    Identify the direction of dataset’s intrinsic bias.

ii.    Change the sign of λ so that you reverse the bias.

iii.    Apply the same methodology as in the Influence Attack.

As the method attempts to reverse the bias, there exists such a parameter λ that the bias will 
intersect with the line y=0. As a result, we can obtain a perfectly fair system.
 

Influence Attack on Fairness (IAF)

The Influence Attack on Fairness (IAF) generates poisoned points by starting with two 

datapoints (x
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, y
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) from each class of  the clean dataset D

c
 and moving them in 

the direction that maximizes an adversarial loss

● L_bc is the BCE Loss 

● L_f  is the fairness loss is the one introduced in [3]:

● In order to update the datapoints              and             we need to perform an EM scheme:

■ E-step: The model is trained on B(D
c
∪D

p
)

■ M-step: The datapoints are updated using gradient ascent:

Anchoring Attack on Fairness (AA)

The Anchoring Attack generates poisoned points by perturbing existing samples and flipping 
their target label, skewing the decision boundary in an unfair manner.

● In the Random Anchoring Attack (RAA), the samples are chosen randomly.

● In the Non-Random Anchoring Attack (NRAA), the samples are the most
popular points w.r.t. their label and demographic group.
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●   L2 defense: remove points that are too far from their class’ centroid (in ℓ
2
 distance).

●   Slab defense: similar, but first project the points onto the line between the centroids.
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Reproducibility

● Both of the proposed attacks impact fairness, surpassing other SoTA attacks.

● Using the Influence Attack on Fairness we can control the impact on performance

by tuning the scale parameter λ accordingly.

Contributions

● Thoroughly reviewed & replicated the original paper, which resulted in a reproducibility 

report outlining all of the missing details needed for future reproductions.

● Open-sourced our implementation, with an improved structure and more extensible code.

● Provided a debiasing algorithm using the methods from the original paper.


