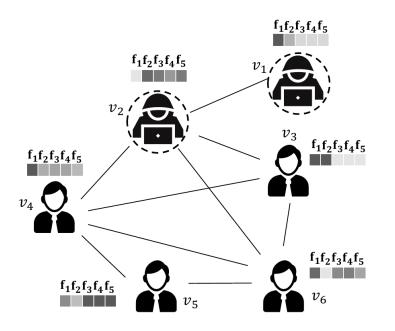
BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs

Kay Liu^{1,*}, Yingtong Dou^{1,8,*}, Yue Zhao^{2,*}, Xueying Ding², Xiyang Hu², Ruitong Zhang³, Kaize Ding⁴, Canyu Chen⁵, Hao Peng³, Kai Shu⁵, Lichao Sun⁶, Jundong Li⁷, George H. Chen², Zhihao Jia², Philip S. Yu¹

¹University of Illinois Chicago ²Carnegie Mellon University ³Beihang University ⁴Arizona State University ⁵Illinois Institute of Technology ⁶Lehigh University ⁷University of Virginia ⁸Visa Research

NeurIPS 2022 Datasets and Benchmarks Track

Unsupervised Outlier Node Detection on Static Attributed Graphs



https://github.com/kaize0409/GCN_AnomalyDetection/raw/master/framework.png

Outlier detection on graphs has broad applications:

- Financial fraud detection on transaction networks
- Fake account detection on social networks
- Spam review detection on e-commerce websites

Limitation of existing works:

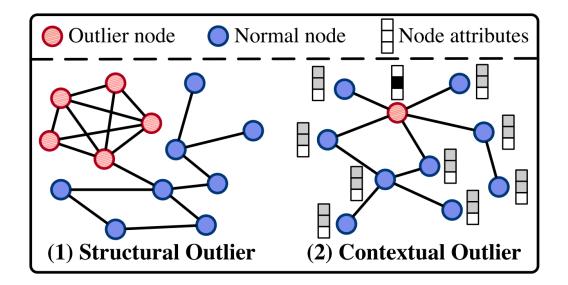
- Lack of a comprehensive benchmark
- Many algorithms only evaluated on synthetic outliers
- Limited analyses of efficiency in both time and space

Key Contributions of BOND

- The first comprehensive benchmark for unsupervised outlier node detection
- **Consolidated taxonomy** of outlier nodes (structural and contextual)
- Systematic performance flaw found in existing deep methods
- **Evaluation** of both *detection quality* and *computational efficiency*
- Reproducible and accessible benchmark toolkit!

Taxonomy of Outliers on the Node Level

- Structural outliers are densely connected nodes in contrast to sparsely connected regular nodes.
- **Contextual outliers** are nodes whose attributes are significantly different from their neighbor nodes.



3 Types of Benchmarked Datasets

• Organic dataset: real graph with organic (real) outliers

Weibo, Reddit, Disney, Books, Enron, DGraph

• Injected datasets: real graph with synthetic outliers

Cora, Amazon, Flickr

https://github.com/pygod-team/data

• Generated datasets: generated graph with synthetic outliers

Gen_Time, Gen_100, Gen_500, Gen_1000, Gen_5000, Gen_10000

14 Benchmarked Algorithms

• Non-Graph

- Similarity based: LOF (2000)
- Tree based: IF (2012)
- MLP+AE: MLPAE (2014)

• Non-Deep

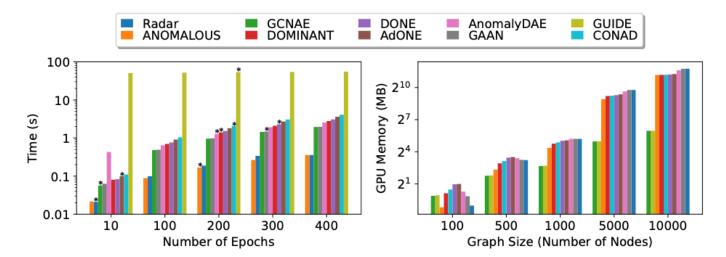
- Cluster: SCAN (2007)
- MF: Radar (2017), ANOMALOUS (2018)

• Deep Graph

- GAN: GAAN (2020)
- MLP+AE: DONE (2020), AdONE (2020)
- GNN+AE: GCNAE (2016), DOMINANT (2019), AnomalyDAE (2020), GUIDE (2021), CONAD (2022)

Result Highlight

- How effective are the algorithms on detecting synthetic and organic outliers?
 - No outlier node detection method is universally the best on all datasets
 - Most deep methods evaluated fail to detect organic outliers
- How do algorithms perform under two types of outliers (structural and contextual)?
 - No method achieves high detection accuracy for both structural and contextual outliers
- How efficient are algorithms in terms of time and space?



PyGOD: <u>https://pygod.org</u> Benchmark: <u>https://pygod.org/tree/main/benchmark</u> Data: <u>https://github.com/pygod-team/data</u> Docs: <u>https://docs.pygod.org</u> Email: <u>benchmark@pygod.org</u>

Presenter: Kay Liu University of Illinois Chicago

Email: <u>zliu234@uic.edu</u> Homepage: <u>https://kayzliu.com/</u> Wechat: kayzliu Twitter: <u>@kayzliu</u>

pygod

kayzliu

