Learning Substructure Invariance for Out-of-Distribution Molecular Representations

Nianzu Yang (杨念祖)

Department of Computer Science and Engineering

Shanghai Jiao Tong University

Background - OoD

Out-of-Distribution Generalization: Assume that there is a potential environment variable ${\bf e}$ accounting for the distribution shift between the training and testing data. In general cases the goal is to predict the target label ${\bf y}$ given the associated input ${\bf x}$.

Formulation:

$$\min_{f} \max_{e \in \mathcal{E}} \mathbb{E}_{(x,y) \sim p(\mathbf{x}, \mathbf{y} | \mathbf{e} = e)} [l(f(x), y) | e]$$

 \mathcal{E} denotes the support of environments, $f(\cdot)$ is the prediction model and $l(\cdot,\cdot)$ represents a loss function.

The risk function under a given environment e:

$$\mathcal{R}_e(\mathbf{x}^e, \mathbf{y}^e) = \mathbb{E}_{(x,y) \sim p(\mathbf{x}, \mathbf{y} | \mathbf{e} = e)}[l(f(x), y) | e]$$

Background - Invariant Learning

- □ Invariant Learning is an emerging line for solving the OOD generalization problem.
- □ These methods propose to find an invariant predictor that could uncover invariant relationships between inputs and targets across all environments.
- □ The invariant predictor aims to learn an invariant representation satisfying such a invariance principle.

Invariance Principle:

- 1) sufficiency: shows sufficient predictive power for the target
- 2) invariance: contributes to equal performance for the downstream tasks across all environments

Background - MRL

Molecular Representation Learning (MRL) aims at embedding a molecule into a vector in latent space as a foundation model, on top of which the learned representations could be used for a variety of downstream tasks.

□ SMILES-based methods

□ Structure-based methods

A molecular graph can be represented as G=(V,E), where V is the graph's node set corresponding to atoms constituting the molecule and E denotes the graph's edge sets corresponding to chemical bonds.

OoD Molecular Represention Learning

□ 00D General Formulation:

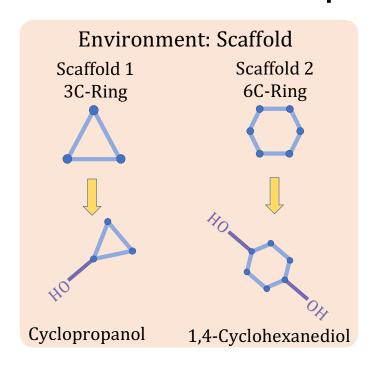
$$\min_{f} \max_{e \in \mathcal{E}} \mathbb{E}_{(x,y) \sim p(\mathbf{x}, \mathbf{y} | \mathbf{e} = e)} [l(f(x), y) | e]$$

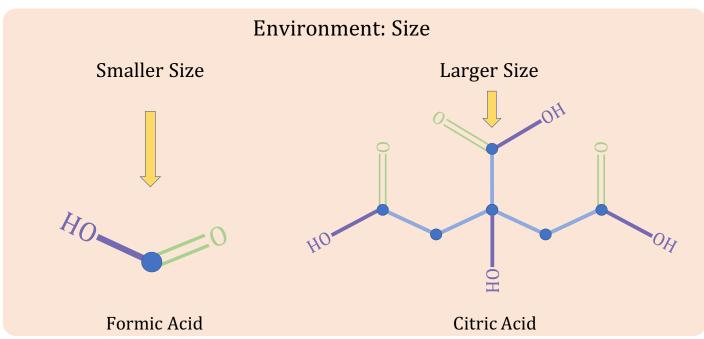
□ OoD on MRL:

$$\min_{f} \max_{e \in \mathcal{E}} \mathbb{E}_{(G_i, y_i) \sim p(\mathbf{G}, \mathbf{y} | \mathbf{e} = e)} [l(f(G_i), y_i) | e]$$

Motivating Examples

Key Observation: the (bio)chemical properties of a molecule are usually associated with a few privileged molecular substructures





the shared hydroxy (-OH)/ carboxy (-COOH)

good water solubility

Environment Inference

□ Reasons for necessity

- Manual specifications of the environments may be unavailable
 Labeling is time-consuming
- Directly utilizing existing environment labels may be problematic
 - ☐ There is few molecules per environment on average.

□ A Variational Inference-based method

- Introduce a variational distribution $q_{\kappa}(\mathbf{e}|\mathbf{G},\mathbf{y})$ to approximate $p_{\tau}(\mathbf{e}|\mathbf{G},\mathbf{y})$
- The learning objective:

$$\mathcal{L}_{elbo}(\tau, \kappa; \mathcal{G}) = \frac{1}{|\mathcal{G}|} \sum_{(G, y) \in \mathcal{G}} \left[\mathbb{E}_{q_{\kappa}} [\log p_{\tau}(y|G, e)] - D_{KL}(q_{\kappa}(e|G, y) \parallel p(e|G)) \right]$$

Invariant Predictor

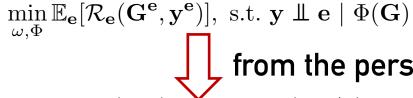
□ Goal:

minimize the expectation of risks from different environments known in the training data:

 Φ : the molecule encoder

 ω : the final predictor

z: the denotation of $\Phi(G)$



from the perspective of information theory $\max_{\omega,\Phi} I(\mathbf{z};\mathbf{y}), \text{ s.t. } \min_{\omega,\Phi} I(\mathbf{y};\mathbf{e}|\mathbf{z})$

$$\max_{\omega,\Phi} \mathrm{I}(\mathbf{z};\mathbf{y}), \; ext{s.t.} \; \min_{\omega,\Phi} \mathrm{I}(\mathbf{y};\mathbf{e}|\mathbf{z})$$

Treating the outputs of ω and Φ as distribution $q_{\theta}(\mathbf{z}|\mathbf{G})$ and $q_{\theta}(\mathbf{y}|\mathbf{z})$

$$\max_{q_{\theta}(\mathbf{y}|\mathbf{z}), q_{\theta}(\mathbf{z}|\mathbf{G})} I(\mathbf{z}; \mathbf{y}), \text{ s.t. } \min_{q_{\theta}(\mathbf{y}|\mathbf{z}), q_{\theta}(\mathbf{z}|\mathbf{G})} I(\mathbf{y}; \mathbf{e}|\mathbf{z})$$

The equivalent tractable objective in practical instantiation:
$$\mathcal{L}_{inv}(\theta;\mathcal{G},\tau) = \frac{1}{|\mathcal{G}|} \sum_{(G,y) \in \mathcal{G}} \left| \log q_{\theta}(y|G) - \mathbb{E}_{p(\mathbf{e}|\mathbf{G})}[\log p_{\tau}(y|G,e)] \right| + \beta \mathbb{E}_{\mathbf{e}} \left[\frac{1}{|\mathcal{G}^e|} \sum_{(G,y) \in \mathcal{G}^e} [-\log q_{\theta}(y|G)] \right]$$

Nianzu Yang **MoleOOD**

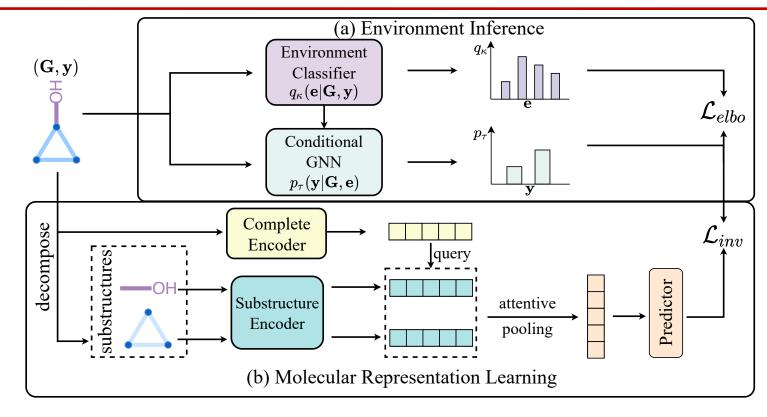
Theoretical Justification

$$\mathcal{L}_{inv}(\theta; \mathcal{G}, \tau) = \underbrace{\frac{1}{|\mathcal{G}|} \sum_{(G, y) \in \mathcal{G}} \left| \log q_{\theta}(y|G) - \mathbb{E}_{p(\mathbf{e}|\mathbf{G})}[\log p_{\tau}(y|G, e)] \right| + \beta \mathbb{E}_{\mathbf{e}} \left[\frac{1}{|\mathcal{G}^{e}|} \sum_{(G, y) \in \mathcal{G}^{e}} [-\log q_{\theta}(y|G)] \right]}_{\boxed{2}}$$

- lacksquare Theorem 1. With $q_{ heta}(\mathbf{y}|\mathbf{z})$ treated as a variational distribution, minimizing term
 - ① contributes to $\min_{q_{\theta}(\mathbf{y}|\mathbf{z}), q_{\theta}(\mathbf{z}|\mathbf{G})} I(\mathbf{y}; \mathbf{e}|\mathbf{z})$, letting show equal performance for the downstream tasks across all environments, i.e. $p(\mathbf{y}|\mathbf{z}, \mathbf{e}) = p(\mathbf{y}|\mathbf{z})$.
- \square Theorem 2. Regarding $q_{\theta}(\mathbf{y}|\mathbf{z})$ as a variational distribution, minimizing term (2) equals to $\max_{q_{\theta}(\mathbf{y}|\mathbf{z}), q_{\theta}(\mathbf{z}|\mathbf{G})} I(\mathbf{z}; \mathbf{y})$, letting \mathbf{z} show sufficient predictive power for downstream tasks.

Nianzu Yang MoleOOD

Overview of MoleOOD



□ two-stage training strategy to search for optimal parameters

- 1) optimizing the environment-inference model: $\kappa^*, \tau^* \leftarrow \arg\max_{\kappa, \tau} \mathcal{L}_{elbo}(\tau, \kappa; \mathcal{G}^{train})$
- 2) optimizing the molecule encoder and the predictor: $\theta^* \leftarrow \arg\min_{\theta} \mathcal{L}_{inv}(\theta; \mathcal{G}^{train}, \tau)$

Nianzu Yang MoleOOD 9

Experiments on OGB benchmark

Table. ROC-AUC results on four datasets from OGB benchmark

Methods	BACE	BBBP	SIDER	HIV
$\begin{array}{c} \overline{GCN} \\ \overline{GCN} + \mathrm{virtual\ node} \\ \overline{GCN} + \mathrm{ours.} \end{array}$	$\begin{array}{ c c c c c c }\hline 80.01 \pm 3.49 \\ \hline 77.51 \pm 3.07 \\ \textbf{84.33} \pm \textbf{1.07}\end{array}$	67.92 ± 1.07 68.19 ± 1.86 70.62 ± 0.99	58.90 ± 1.30 60.71 ± 1.34 63.38 ± 0.67	$76.35 \pm 2.01 \over 75.76 \pm 2.21$ 77.73 ± 0.76
GIN GIN + virtual node GIN + ours.				76.58 ± 1.02 77.11 ± 0.96 78.31 ± 0.24
GraphSAGE GraphSAGE + virtual node GraphSAGE + ours.			58.00 ± 0.95 59.48 ± 1.37 61.09 ± 0.28	76.98 ± 1.13 77.28 ± 1.53 79.39 ± 0.51

- MoleOOD achieves consistent significant improvements across four read-world datasets with different backbones (GCN, GIN and GraphSAGE)
 - our method can achieve up to 5.9% improvement

Nianzu Yang MoleOOD 10

Experiments on DrugOOD benchmark

Table. ROC-AUC results for six datasets from DrugOOD benchmark

Dataset	IC50		EC50			
Environment	Assay	Scaffold	Size	Assay	Scaffold	Size
ERM	70.93 ± 2.10	67.31 ± 1.72	67.40 ± 0.56	69.35 ± 7.38	63.92 ± 2.09	60.94 ± 1.95
IRM	70.85 ± 2.41	$\overline{66.06 \pm 1.23}$	$\overline{58.46 \pm 2.11}$	69.94 ± 1.03	63.74 ± 2.15	58.30 ± 1.51
DeepCoral	69.82 ± 4.23	66.36 ± 2.57	59.21 ± 2.09	69.42 ± 3.35	63.66 ± 1.87	56.13 ± 1.77
\mathbf{DANN}	70.00 ± 1.03	63.61 ± 2.32	65.77 ± 0.47	66.97 ± 7.19	64.33 ± 1.82	61.11 ± 0.64
\mathbf{MixUp}	70.22 ± 3.66	66.43 ± 1.08	67.77 ± 0.23	70.62 ± 2.12	64.53 ± 1.66	62.67 ± 1.41
${f Group Dro}$	69.98 ± 1.74	64.09 ± 2.05	58.46 ± 2.69	70.52 ± 3.38	$\overline{64.13 \pm 1.81}$	$\overline{59.06 \pm 1.50}$
Ours.	$\textbf{71.38} \pm \textbf{0.68}$	68.02 ± 0.55	66.51 ± 0.55	$\textbf{73.25}\pm\textbf{1.24}$	66.69 ± 0.34	$\textbf{65.09} \pm \textbf{0.90}$

- □ DrugOOD provides more diverse splitting indicators than OGB, including assay, scaffold and size
- □ Except on IC50-size, our method outperforms all baselines across all datasets
 - our method can achieve up to 3.9% improvement

Ablation Study

Table. Ablation study on EC50-Assay/Scaffold/Size datasets

Method	Assay	Scaffold	Size
$\mathbf{ERM} \; (\mathrm{GIN} + \mathrm{ERM} \; \mathrm{loss})$ \mathbf{MixUp} \mathbf{DANN}	$ \begin{vmatrix} 69.35 \pm 7.38 \\ 70.62 \pm 2.12 \\ 66.97 \pm 7.19 \end{vmatrix} $	$ \begin{vmatrix} 63.92 \pm 2.09 \\ 64.53 \pm 1.66 \\ 64.33 \pm 1.82 \end{vmatrix} $	$ \begin{vmatrix} 60.94 \pm 1.95 \\ 62.67 \pm 1.41 \\ 61.11 \pm 0.64 \end{vmatrix} $
Our architecture + ERM loss GIN + new learning objective	$\begin{array}{ c c c c c c }\hline 71.44 \pm 2.02 \\ 72.07 \pm 1.14 \\ \hline \end{array}$	$ \begin{vmatrix} 65.99 \pm 0.42 \\ 66.33 \pm 1.38 \end{vmatrix} $	$\begin{vmatrix} 64.23 \pm 0.71 \\ 64.43 \pm 1.10 \end{vmatrix}$
DANN using our inferred environment label Our model using given environment label	$ \begin{vmatrix} 68.83 \pm 2.44 \\ 71.94 \pm 2.77 \end{vmatrix} $	$ \begin{vmatrix} 64.95 \pm 1.07 \\ 66.29 \pm 0.85 \end{vmatrix} $	
Our full model	$ \mid \textbf{73.25} \pm \textbf{1.24} $	$\mid \textbf{66.69} \pm \textbf{0.34}$	$ \boxed{ 65.09 \pm 0.90 }$

We analyze the contributions of different model components to the final performance.

Nianzu Yang MoleOOD 12

Conclusion

- □ Proposes to leverage the invariance principle which opens a new perspective for handling substructure-aware distribution shifts.
- □ Practical applicability for molecular 00D learning where the manual specifications of the environments are often unavailable.

□ Extensive experiments on ten public datasets demonstrate our model yields consistent and significant improvements.

Thanks

