

OpenAUC: Towards AUC-Oriented Open-Set Recognition

Zitai Wang, Qianqian Xu*, Zhiyong Yang,

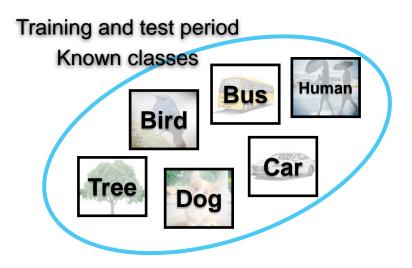
Yuan He, Xiaochun Cao, Qingming Huang*

Zitai Wang

2022.10

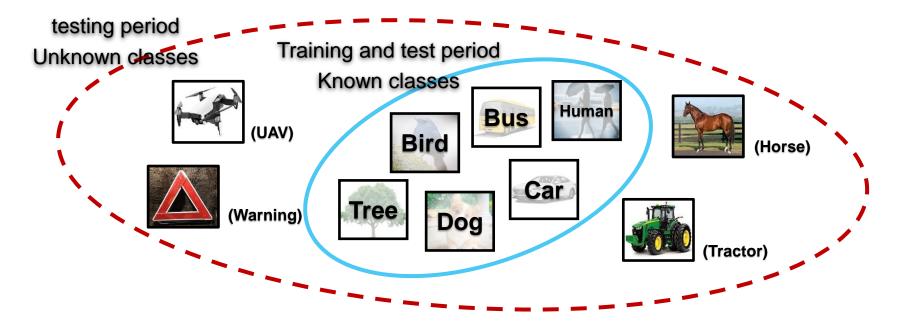
Open-set Recognition (OSR)

□ Traditional machine learning implicitly follows a close-set assumption



Open-set Recognition (OSR)

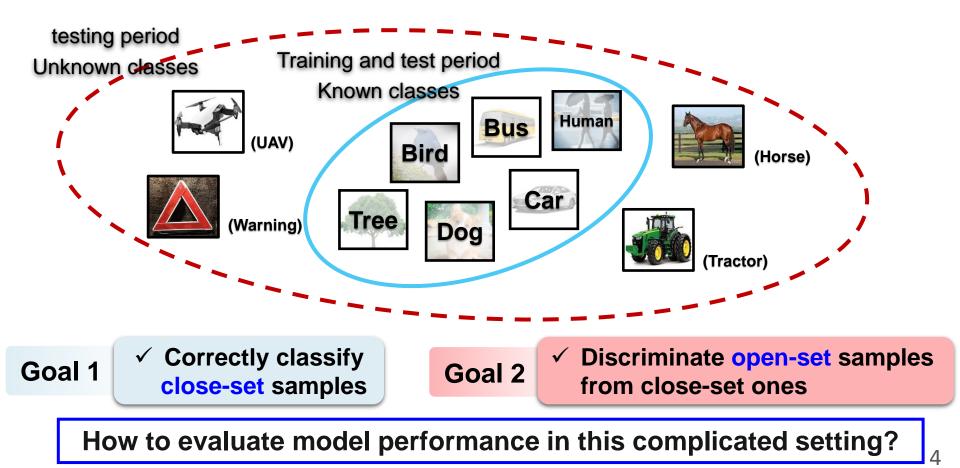
□ In many practical scenarios, some test samples inevitably belong to none of the known classes



Close-set models will classify novel samples into known classes!

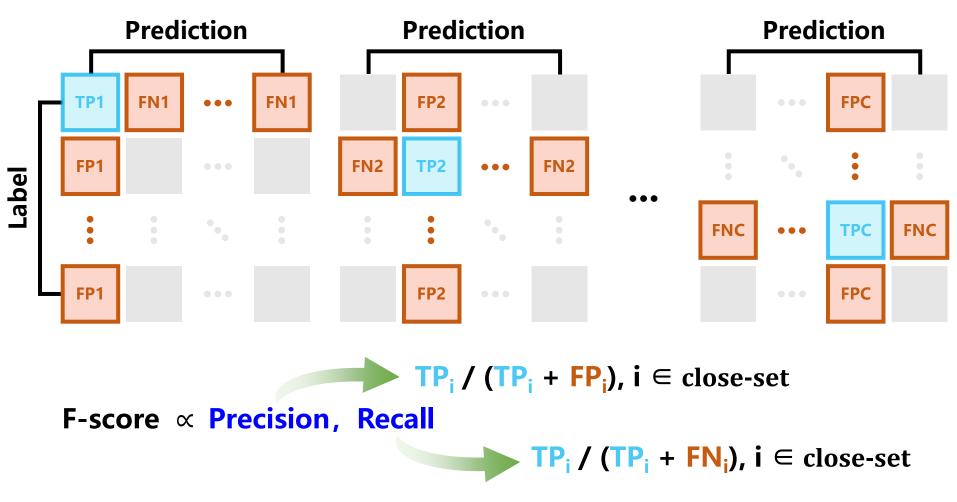
Open-set Recognition (OSR)

□ In many practical scenarios, some test samples inevitably belong to none of the known classes



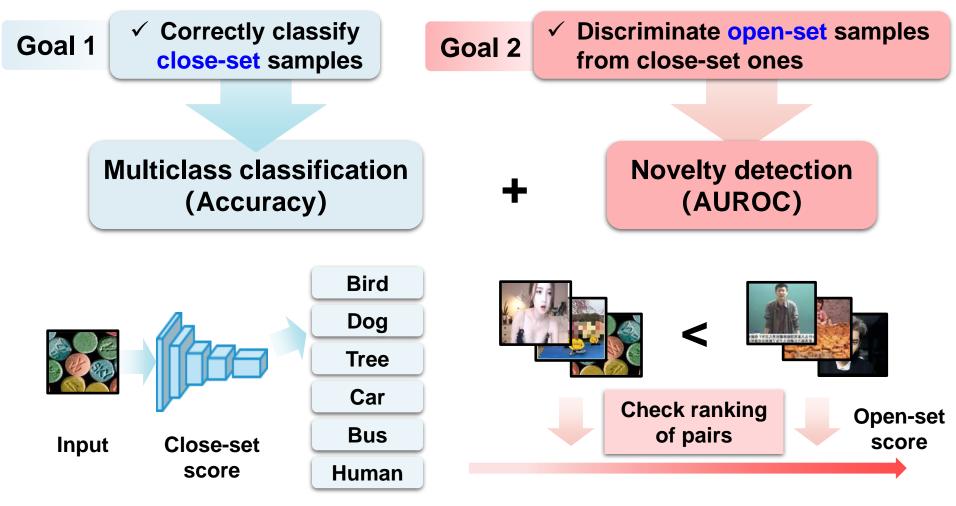
Traditional metrics for OSR

Classification-based ones



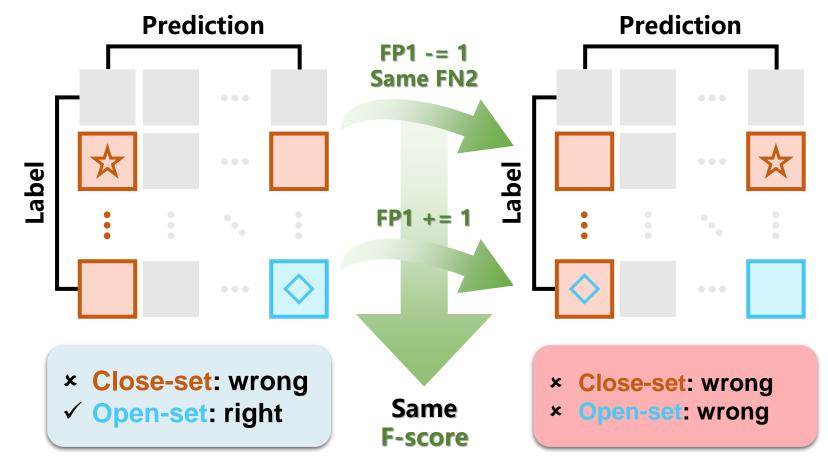
Traditional metrics for OSR

□ Novelty-detection-based ones



Limitation of traditional metrics

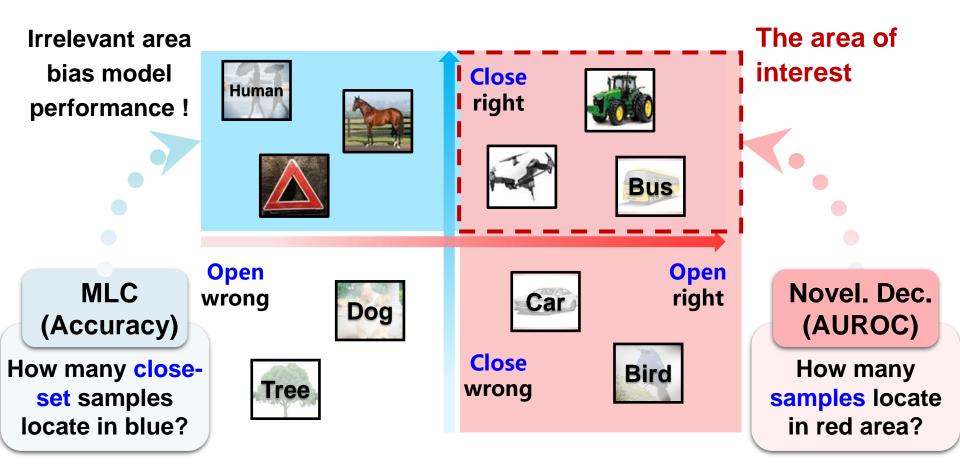
□ Inconsistency property of F-score



Metric value is inconsistent with Model performance!

Limitation of traditional metrics

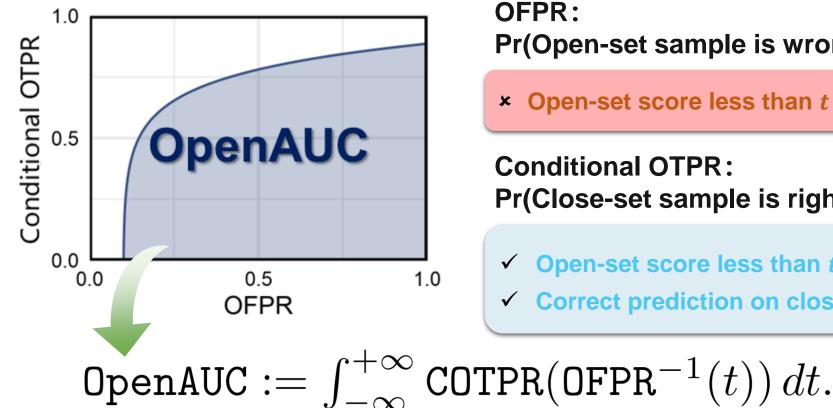
□ Inconsistency property of close-set Acc and AUROC



Local metrics are inconsistent with global performance, $1 + 1 \neq 2$!

The definition of OpenAUC

Aggregating close-set and open-set performances under different thresholds



OFPR:

Pr(Open-set sample is wrong)

× Open-set score less than t

Conditional OTPR: **Pr(Close-set sample is right)**

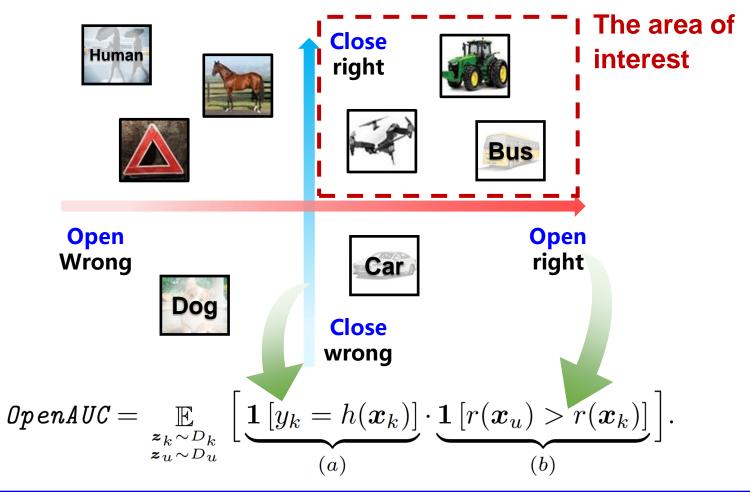
Open-set score less than t

Correct prediction on close-set

The integral formulation is hard to calculate

The definition of OpenAUC

□ A concise pairwise formulation



OpenAUC considers the samples located in the area of interest !

The advantage of OpenAUC

Further theoretical results

Proposition 5. Given a sample pair $((\boldsymbol{x}_1, C+1), (\boldsymbol{x}_2, y_2))$, where $y_2 \neq C+1$, for any (h, r) such that $R(\boldsymbol{x}_1) = 1, R(\boldsymbol{x}_2) = 0, h(\boldsymbol{x}_2) \neq y_2$, if (\tilde{h}, \tilde{r}) makes the same predictions as (h, r) expect that $\tilde{R}(\boldsymbol{x}_1) = 0, \tilde{h}(\boldsymbol{x}_1) = h(\boldsymbol{x}_2)$ and $\tilde{R}(\boldsymbol{x}_2) = 1$, we have $OpenAUC(\tilde{h}, \tilde{r}) < OpenAUC(h, r)$.

OpenAUC is consistent when the inconstant property of F-score happens

Proposition 6. Given a dataset S, for any (f, r) such that OpenAUC = k and any threshold t_{C+1} such that $FPR_{C+1} = a \neq 0$, we have $TPR_{C+1} \geq 1 - (1-k)/a$.

Optimizing OpenAUC increases the lower bound of open-set performance

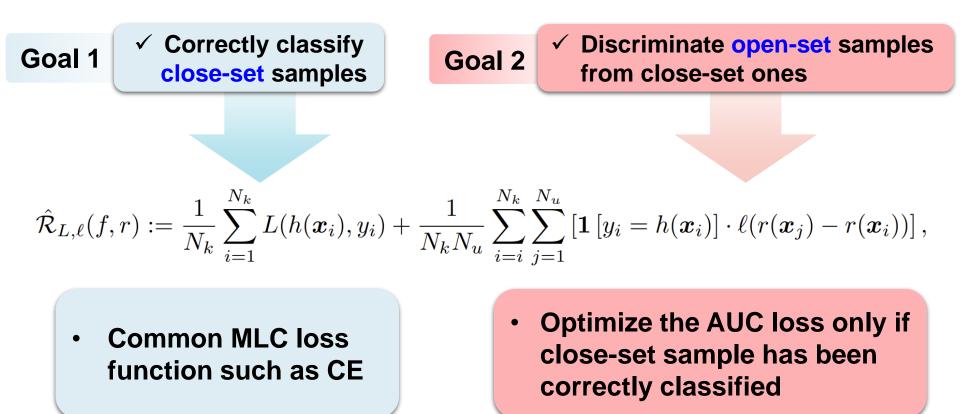
Proposition 7. Given two close-set samples (\mathbf{x}_1, y_1) and (\mathbf{x}_2, y_2) and an open-set sample $(\mathbf{x}_3, C+1)$, if (\tilde{h}, \tilde{r}) makes the same predictions as (h, r) expect that $h(\mathbf{x}_1) = \tilde{h}(\mathbf{x}_1) = y_1, h(\mathbf{x}_2), \tilde{h}(\mathbf{x}_2) \neq y_2, r(\mathbf{x}_2) > r(\mathbf{x}_3) > r(\mathbf{x}_1), r(\mathbf{x}_3) = \tilde{r}(\mathbf{x}_3)$ and $\tilde{r}(\mathbf{x}_2) = r(\mathbf{x}_1), \tilde{r}(\mathbf{x}_1) = r(\mathbf{x}_2)$, we have $OpenAUC(\tilde{h}, \tilde{r}) < OpenAUC(h, r)$.

OpenAUC is consistent when the inconstant property of AUROC happens

OpenAUC overcomes the limitations of traditional metrics

OpenAUC optimization

D Empirical minimization objective



Optimizing OpenAUC is consistent with the decision process

Empirical results

□ Inconsistency property of classification-based metrics

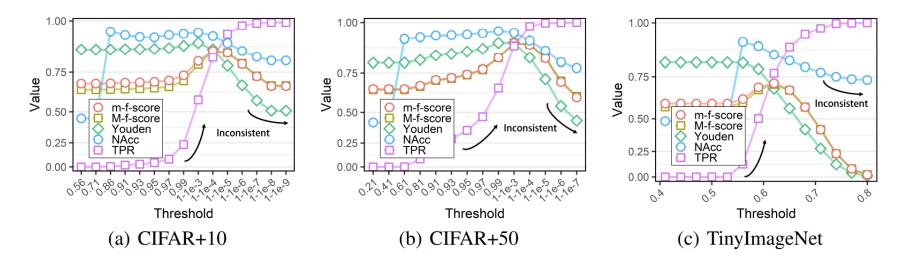


Figure 1: The inconsistency property of classification-based metrics. We can find that all these metrics decrease rapidly as the TPR performance of unknown classes increases.

Optimizing OpenAUC help boost model performances

Table 4: Empirical results on CUB, where E/M/H corresponds to the results on the Easy/Medium/Hard split of open-set samples. The best and the runner-up method on each metric are marked with **red** and **blue**, respectively.

		Close-set Accuracy	AUC (E/M/H)	OpenAUC (E/M/H)
	Softmax	78.1	79.7 / 73.8 / 66.9	67.2 / 63.0 / 57.8
	GCPL [31]	82.5	85.0 / 78.7 / 73.4	74.7 / 70.3 / 66.7
	RPL [26]	82.6	85.5 / 78.1 / 69.6	74.5 / 69.0 / 62.4
	ARPL [13]	82.1	85.4 / 78.0 / 70.0	74.4 / 68.9 / 62.7
	CE+ [14]	86.2	88.3 / 82.3 / 76.3	79.8 / 75.4 / 70.8
	ARPL+ [14]	85.9	83.5 / 78.9 / 72.1	76.0 / 72.4 / 66.8
	Ours	86.2	88.8 / 83.2 / 78.1	80.2 / 76.1 / 72.5
	Error	@95%TPR (E/M/H)	macro F-score (E/M	1/H) micro F-score (E/M/H)
Softm	ax 4	6.6 / 55.9 / 62.8	67.4 / 66.5 / 66.6	6 69.0 / 68.9 / 70.8
GCPL	. [31] 3	67.0 / 46.8 / 51.3	77.6 / 75.4 / 74.0	0 78.4 / 76.8 / 77.4
RPL [[26] 3	9.5 / 53.5 / 64.0	75.4 / 73.3 / 72.4	4 76.7 / 75.2 / 76.6
ARPL	L [13] 3	67.6 / 49.9 / 62.7	75.3 / 73.1 / 72.2	2 76.6 / 75.0 / 76.5
CE+ [[14] 2	8.4 / 42.1 / 52.3	82.6 / 80.3 / 78.3	83.3 / 81.6 / 81.4
ARPL	L+ [14] 4	8.7 / 60.6 / 67.8	80.8 / 79.0 / 77.3	81.7 / 80.4 / 80.4
Ours	2	28.1 / 39.7 / 47.6	82.2 / 79.7 / 78.1	83.0 / 81.2 / 81.1

14

Thanks for your listening!

15