

Let Images Give You More: Point Cloud Cross-Modal Training for Shape Analysis

Xu Yan^{1,2†}, Heshen Zhan^{1,2†}, Chaoda Zheng^{1,2}, Jiantao Gao⁴, Ruimao Zhang³, Shuguang Cui^{2,1,5}, Zhen Li^{2,1*}

¹FNii, CUHK-Shenzhen, ²SSE, CUHK-Shenzhen, ³SDS, CUHK-Shenzhen, ⁴USV, Shanghai University, ⁵Pengcheng Lab

Motivation

NEURAL INFORMATION PROCESSING SYSTEMS

3D point cloud:

Partial and geometric information. Only sparse and textureless features.

2D image:

Rich color and fine-grained texture. Ambiguous in depth and shape sensing.

Could we use the rich information hidden in 2D images to boost 3D point cloud shape analysis?

Motivation

Knowledge distillation:

Takes extra image inputs only in training phases.Not computation-intensive during inference.Don't need paired-images during inference.

Motivation

Our cross-modality setting:

3D and 2D data contain different information. Encoders are quite different.

New cross-modal knowledge distillation methods are needed!

PointCMT

Obtaining image encoder:

PointCMT

Training cross-modal point generator (CMPG):

Compared with traditional L_2 loss, the EMD distance is natural for solving an assignment problem for permutation-invariant point sets!

PointCMT

Feature Enhancement Loss:

PointCMT

Classifier Enhancement Loss:

PointCMT

The whole framework of PointCMT:

Experiment

Classification results on ModelNet40 dataset

Method	Input	#Points	mAcc(%)	OA(%)	Speed	Param.
PointNet [33]	pnt	1k	86.0	89.2	-	3.47M
PointNet++ [34]	pnt, nor	5k	-	91.9	-	1.47M
PointCNN [25]	pnt	1k	88.0	92.5	-	-
PointConv [47]	pnt, nor	1k	-	92.5	80^{\dagger}	18.6M
KPConv [39]	pnt	7k	-	92.9	10^{\dagger}	15.2M
PointASNL [54]	pnt, nor	1k	-	93.2	-	-
PosPool [29]	pnt	5k	-	93.2	-	-
Point Transformer [60]	pnt	1k	90.6	93.7	-	-
GBNet [36]	pnt	1k	91.0	93.8	112†	8.4M
GDANet [51]	pnt	1k	-	93.8	14^{\dagger}	0.9M
SimpleView [12]	pnt	1k	-	93.9	2208	1.64M
CurveNet [49]	pnt	1k	-	94.2	15†	2.0M
PointMLP [31]	pnt	1k	91.4	94.5	139	12.6M
DGCNN [43] (baseline)	pnt	1k	90.2	92.9	518	1.68M
RS-CNN [27] (baseline)	pnt	1k	89.3	92.9	2174	1.17M
PointNet++ [34] (baseline)	pnt	1k	90.1	93.4*	300	1.62M
DGCNN w/ PointCMT	pnt	1k	90.8 (+0.6)	93.5 (+0.6)	518	1.68M
RS-CNN w/ PointCMT	pnt	1k	90.1 (+0.8)	93.8 (+0.9)	2174	1.17M
PointNet++ w/ PointCMT	pnt	1k	<u>91.2</u> (+1.1)	<u>94.4</u> (+1.0)	300	1.62M

Experiment

Classification results on ScanObjectNN dataset:

	OBJ_0	ONLY	PB_T50_RS		
Method	mAcc(%)	OA(%)	mAcc(%)	OA(%)	
3DmFV [3]	-	73.8	58.1	63.0	
PointNet [33]	-	79.2	63.4	68.2	
SpiderCNN [52]	-	79.5	69.8	73.7	
PointNet++ [34]	-	84.3	75.4	77.9	
DGCNN [43]	-	86.2	73.6	78.1	
PointCNN [25]	-	85.5	75.1	78.5	
DRNet [35]	-	-	78.0	80.3	
GBNet [36]	-	-	77.8	80.5	
SimpleView [12]	86.2	89.0	-	80.8	
PRANet [4]	-	-	79.1	82.1	
MVTN [15]	-	-	-	82.8	
PointNet++ [34] (baseline)	85.4±0.2	87.4 ± 0.1	75.5 ± 0.3	79.2±0.2	
PointMLP [31] (baseline)	89.1 ± 0.3	92.2 ± 0.3	83.9 ± 0.5	85.4 ± 0.3	
PointNet++ w/ PointCMT	89.0±0.3 (+3.7)	91.6±0.2 (+4.3)	79.9±0.3 (+4.4)	83.1±0.2 (+3.9)	
PointMLP w/ PointCMT	91.8±0.2 (+2.6)	93.2±0.3 (+1.0)	84.4±0.4 (+0.4)	86.4±0.3 (+1.0)	

Experiment

Ablation study on ModelNet40 and ScanObjetNN dataset:

Model	FE	CE	ModelNet40	OBJ_ONLY	PB_T50_RS
	×	×	93.4	87.5	79.4
DointNati		×	93.8 (+0.4)	89.2 (+1.7)	82.5 (+3.1)
Pointinet++	×	✓	94.0 (+0.6)	91.3 (+3.8)	82.3 (+2.9)
	1	1	94.4 (+1.0)	91.8 (+4.3)	83.3 (+3.9)

Comparison with Knowledge Distillation Methods:

Method	ModelNet40	PB_T50_RS
Baseline	93.4	79.4
Hinton <i>et al</i> . [17]	93.1 (-0.3)	81.8 (+2.4)
Huang <i>et al</i> . [21]	93.6 (+0.2)	82.0 (+2.6)
Yang <i>et al</i> . [55]	93.9 (+0.5)	81.1 (+1.7)
PointCMT (ours)	94.4 (+1.0)	83.3 (+3.9)

Let Images Give You More: Point Cloud Cross-Modal Training for Shape Analysis

Thanks for watching!

Xu Yan^{1,2†}, Heshen Zhan^{1,2†}, Chaoda Zheng^{1,2}, Jiantao Gao⁴, Ruimao Zhang³, Shuguang Cui^{2,1,5}, Zhen Li^{2,1*}

¹FNii, CUHK-Shenzhen, ²SSE, CUHK-Shenzhen, ³SDS, CUHK-Shenzhen, ⁴USV, Shanghai University, ⁵Pengcheng Lab