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Background: Multi-view stereopsis (MVS)
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• Construct 3D volume
• Project 2D features to 3D
• Learning through supervision

Supervised MVS

Previous works in MVS

• Calculate photometric consistency
• Measures on patches locally
• Robust similarity function (NCC) 

• Random sampling and propagation

Traditional MVS
• Handcraft semantic detection

• Superpixel
• Line\plane detection

• RANSAC primitive fitting

Semantic MVS

Gipuma [Galliani et al. 2015]
COLMAP [Schönberger et al 2016]

MVSNet [Yao et al. 2018]
Consistency [Khot et al 2019]

TAPAMVS [Romanoni et al. 2019]
Urban [Micusík et al 2010]

Handcraft or data-drive: susceptible to textureless patterns or geometry variations 



Bottleneck

Our work: Bridge the gap between the two areas.

• Local region
• No shape prior

Geometric consistency Semantic segmentation
• No geometric cues: 

• Scales, shapes and boundaries 

• Lack of training data



ElasticMVS
A novel elas*c part representa*on encoding part segmenta*ons

• Geometry-aware: Encode geometric connectedness, smoothness and boundaries  
• Elastically: Represent elastically-varying scales, shapes and boundaries 
• Self-supervised: Learn the representation and estimate per-view depth iteratively 
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Problem definition

• Definition
• Geometry: Given an image 𝑥, find the best depth and normal 𝑑!, 𝑛! on each pixel 𝑝 ∈ 𝑥.
• Segmentation: Given a set of images 𝑋, learn the segmentation Π" 𝑥 .

• Optimization goal
• Geometry: Make the photo-consistency loss as lower as possible (𝑀#).
• Segmentation: Make the surface in each segment as smoother as possible (𝑀$).

Photo-consistency loss, 
used in traditional MVS. Surface smoothness loss

Intuively, In each segment from the segmented image, 
the depth is smooth and photometric consistent



Representation & Learning

• Elastic Part Representation 
• Find geometrically concentrated areas 𝑆!.
• Representation 𝑧! in the latent feature space is close enough in these areas.

• Learning
• Compact the representation in the geometric concentrated part.
• Contrast the representation otherwise.
• Training by contrastive learning.

Photo-consistency loss, 
used in traditional MVS. Surface smoothness loss

Fixed



Inference

• Part-aware propagation
• gather hypotheses 𝑇! from the same physical surface part. 
• Use our representation to identify these parts.
• Representation 𝑧! in the latent feature space is close enough in these areas.

• Part-aware losses
• Part-aware correspondence: check the photo & representation consistency
• Part smoothness loss:  piecewise smoothness using L1 median loss

Photo-consistency loss, 
used in traditional MVS. Surface smoothness loss

Fixed

Solved using discretely sampling
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Inference:
Different strategy during propagation

Ours: adaptive

Gipuma: Fixed

ACMM: Heuristic [Xu. CVPR 2019]

[Galliani et al. 2015]



Inference:
Detailed pipeline
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Results on T&T

Ours



Visualization

𝑧!
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h"ps://www.gigavision.cn

https://www.gigavision.cn

6 GigaVision challenges (GigaDetec2on, GigaMOT, GigaTrajectory, 
GigaReconstruc2on, GigaRendering and GigaCrowd) with lucra2ve awards.

2D 3D

https://www.gigavision.cn/


Thank you!

h"ps://github.com/THU-luvision

Github

h"p://www.luvision.net

Welcome to our lab’s website for more works !

https://github.com/THU-luvision
http://www.luvision.net/

