NeurIPS 2022 Spotlight ElasticMVS: Learning elastic part representation for self-supervised multi-view stereopsis

Jinzhi Zhang^{1,2*}, Ruofan Tang^{1,3}, Zheng Cao⁴, Jing Xiao⁵, Ruqi Huang^{2§} and Lu Fang^{1§}

¹Department of Electronic Engineering, Tsinghua University ²Tsinghua Shenzhen International Graduate School ³Dept. of Automation, Tsinghua University, ⁴BirenTech Research, ⁵Pingan Group

*zjz22@mails.tsinghua.edu.cn

http://www.luvision.net

Background: Multi-view stereopsis (MVS)

Previous works in MVS

Traditional MVS

- Calculate photometric consistency
 - Measures on patches locally
 - Robust similarity function (NCC)
- Random sampling and propagation

Gipuma [Galliani et al. 2015] COLMAP [Schönberger et al 2016]

Supervised MVS

- Construct 3D volume
- Project 2D features to 3D
- Learning through supervision

MVSNet [Yao et al. 2018] Consistency [Khot et al 2019]

Semantic MVS

- Handcraft semantic detection
 - Superpixel
 - Line\plane detection
- RANSAC primitive fitting

TAPAMVS [Romanoni et al. 2019] Urban [Micusík et al 2010]

Handcraft or data-drive: susceptible to textureless patterns or geometry variations

Bottleneck

Geometric consistency

- Local region
- No shape prior

Semantic segmentation

- No geometric cues:
 - Scales, shapes and boundaries
- Lack of training data

Our work: Bridge the gap between the two areas.

ElasticMVS

A novel elastic part representation encoding part segmentations

- Geometry-aware: Encode geometric connectedness, smoothness and boundaries
- Elastically: Represent elastically-varying scales, shapes and boundaries
- Self-supervised: Learn the representation and estimate per-view depth iteratively

Problem definition

- Definition
 - Geometry: Given an image x, find the best depth and normal (d_p, n_p) on each pixel $p \in x$.
 - Segmentation: Given a set of images X, learn the segmentation $\Pi_{\Theta}(x)$.
- Optimization goal
 - Geometry: Make the photo-consistency loss as lower as possible (M_s) .
 - Segmentation: Make the surface in each segment as smoother as possible (M_g) .

$$\Theta^{optim} = \operatorname{argmin}_{\Theta} \sum_{x \in X} \min_{d,n,\Pi} \left\{ \sum_{p} \left[M_s \left(d_p, n_p \mid x \right) + M_g \left(d_p, n_p \mid \Pi(x) \right) \right] \right\}$$
Photo-consistency loss, used in traditional MVS. Surface smoothness loss

Intuively, In each segment from the segmented image, the depth is smooth and photometric consistent

Representation & Learning

- Elastic Part Representation
 - Find geometrically concentrated areas S_p .
 - Representation z_p in the latent feature space is close enough in these areas.
- Learning
 - Compact the representation in the geometric concentrated part.
 - Contrast the representation otherwise.
 - Training by contrastive learning.

$$\Theta^{optim} = \operatorname{argmin}_{\Theta} \sum_{x \in X} \min_{d,n,\Pi} \left\{ \sum_{p} \left[M_s \left(d_p, n_p \mathsf{Fixed} M_g \left(d_p, n_p \right) | \Pi(x) \right) \right] \right\}$$
Photo-consistency loss, used in traditional MVS. Surface smoothness loss
$$-\sum_{p} \log \frac{\sum_{p^+ \in S_p} \exp\left(\langle z_p, z_p \rangle / \tau \right)}{\sum_{q \neq p} \exp\left(\langle z_p, z_q \rangle / \tau \right)}$$

Inference

- Part-aware propagation
 - gather hypotheses T_p from the same physical surface part.
 - Use our representation to identify these parts.
 - Representation z_p in the latent feature space is close enough in these areas.
- Part-aware losses
 - *Part-aware correspondence*: check the photo & representation consistency $M_s(d_p, n_p | x, z)$
 - *Part smoothness loss*: piecewise smoothness using L1 median loss $M_g(d_p, n_p \mid z) = \sum \omega_q \|e_p e_q\|$

$$\Theta^{optim} = \operatorname{argmin}_{\Theta} \sum_{x \in X} \min_{d,n,\Pi} \left\{ \sum_{p} [M_s(d_p, n_p \mid x) + M_g(d_p, n_p \mid \textbf{Fixed})] \right\}$$
Photo-consistency loss, used in traditional MVS. Surface smoothness loss
Solved using discretely sampling $\longrightarrow (d_p^{\text{opt}}, n_p^{\text{opt}}) = \underset{d_p^*, n_p^*}{\operatorname{argmin}} \left\{ M_s(d_p^*, n_p^* \mid x, z) + \alpha_g \cdot M_g(d_p^*, n_p^* \mid z) \right\}$

$$\mathcal{T}_p = \left\{ q \in R^2 \bigg| \|z_p - z_q\| \leq \eta, c_q \geq \xi
ight\}$$

Inference: Different strategy during propagation

Gipuma: Fixed

ACMM: Heuristic

Ours: adaptive

00000000000

00000000000

00000000000

(b)

[Galliani et al. 2015]

[Xu. CVPR 2019]

0+0+0+0+0+0+0+0+0+0+0+0+0+0

0+0+0+0+0+0+0+0+0+0+0+0

0+0+0+0+0+0+0+0+0+0+0

(a)

(a) Standard propagation

00000000000

00000000000

00000000000

(c)

(b) Part-aware propagation

Inference: **Detailed** pipeline

Iterative refinement

Results on T&T

Method	Intermediate	Advanced
MVSNet [47]	43.48	-
CasMVSNet [15]	56.84	31.12
UCSNet [10]	54.83	-
PVAMVSNet [49]	54.46	-
SurfaceNet+ [19]	49.38	-
R-MVSNet [48]	50.55	29.55
Point-MVSNet [7]	48.27	-
PatchmatchNet [39]	53.15	32.31
Patchmatch-RL [26]	51.81	31.78
MVS ² [11]	37.21	-
M ³ VSNet [16]	37.67	-
SurRF [51]	54.36	-
JDACS [43]	45.48	-
COLMAP[34]	42.14	27.24
ElasticMVS (ours)	57.88	37.81
<u>_</u>		

Ours

Visualization

$$\mathcal{T}_p = \left\{ q \in R^2 \middle| \|z_p - z_q\| \le \eta, c_q \ge \xi \right\}$$

 Z_p

Reference

Silvano Galliani, Katrin Lasinger, and Konrad Schindler. 2015. Massively parallel multiview stereopsis by surface normal diffusion. In *IEEE International Conference on Computer Vision*. 873–881.

Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. 2016. Pixelwise view selection for unstructured multi-view stereo. In *European Conference on Computer Vision*. Springer, 501–518.

Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. 2018. MVSnet: Depth inference for unstructured multi-view stereo. In *Proceedings of the European Conference on Computer Vision (ECCV)*. 767–783.

Tejas Khot, Shubham Agrawal, Shubham Tulsiani, Christoph Mertz, Simon Lucey, and Martial Hebert. 2019. Learning unsupervised multi-view stereopsis via robust photometric consistency. *arXiv preprint arXiv:1905.02706* (2019).

Andrea Romanoni and Matteo Matteucci. 2019. TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019), 10412–10421.

Branislav Micusík and Jana Kosecka. 2010. Multi-view Superpixel Stereo in Urban Environments. International Journal of Computer Vision 89 (2010), 106–119.

J. Zhang et al., "GigaMVS: A Benchmark for Ultra-Large-Scale Gigapixel-Level 3D Reconstruction," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7534-7550, 1 Nov. 2022, doi: 10.1109/TPAMI.2021.3115028.

J. Zhang, M. Ji, G. Wang, Z. Xue, S. Wang and L. Fang, "SurRF: Unsupervised Multi-View Stereopsis by Learning Surface Radiance Field," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7912-7927, 1 Nov. 2022, doi: 10.1109/TPAMI.2021.3116695.

GGA/SON When Gigapixel Videography Meets Computer Vision

2D

PANDA

PANDA is the first gigaPixel-level humAN-centric viDeo dAtaset to support large-scale, long-term, and multi-object visual analysis. The videos in PANDA were captured by gigapixel cameras, covering real-world large-scale scenes with both wide field-of-view (km2 area level) and high resolution details (gigapixel-level/frame), with a great amount of professional labels, including bounding boxes, attributes trajectories groups interactions, etc.

21+ R:at World Large-Scale Scaner Fine Grained Attribute Labels TOP BAME 16ME Pixel Per Frame Bounding Boxes

3D

https://www.gigavision.cn

6 GigaVision challenges (GigaDetection, GigaMOT, GigaTrajectory, GigaReconstruction, GigaRendering and GigaCrowd) with lucrative awards.

Thank you!

Welcome to our lab's website for more works !

http://www.luvision.net

https://github.com/THU-luvision