

A2: Efficient Automated Attacker for Boosting Adversarial Training

Zhuoer Xu^{1,2}, Guanghui Zhu¹, Changhua Meng², Shiwen Cui², Zhenzhe Ying², Weiqiang Wang², Ming Gu², Yihua Huang¹ ¹State Key Laboratory for Novel Software Technology, Nanjing University ²Tiansuan Lab, Ant Group

• In adversarial training, a defense model is trained on the worst-case adversarial perturbations generated by an attacker, which formulates a saddle point problem:

• Related Work

- Loss functions *l*: TRADES [Zhang et al., 2019] and MART [Wang et al., 2019];
- Unlabeled data $D \cup D_{unlabel}$: RST [Carmon et al., 2019];
- More perturbations $f_{\theta+\delta_{\theta}}(x+\delta_x)$: AWP [Wu et al., 2020];
- Our Work: stronger perturbations yield more robust models.

Methodology

• Adversarial Training (defense): stronger perturbations yield more robust defense model.

- A^2 (attack): a parameterized Automated Attacker to search in the attacker space for the best attacker against the defense model and examples.
- Compositions:
 - Attacker space: general enough to cover the existing attackers;
 - Architecture of A^2 : leverage the information model and example to search for the best attacker;
 - Training and Inference of A^2 : efficient to be used on-the-flying during training.

Search Space

• Hierarchical attack space by referring to existing attackers.

Automated Attacker A²

• Training & Inference:

$$\frac{1}{M}\sum_{m=1}^{M}l\left(f_{\theta}\left(\mathbf{x}+\bar{C}([\phi(\kappa^{(m)},e_{O_{p}}),\gamma_{O_{s}}],\nabla_{\mathbf{x}})\right),y\right)$$

Experiments

• Attack Effect

		10-step		20-step				
Defense	Natural	PGD	A ²	A^2 [†]	PGD	A ²	A^2 †	PGD^{100}
MART ⁰	83.07	54.78	54.09	53.65	53.76	53.52	53.24	53.28
TRADES-AWP ¹	85.36	60.22	59.67	59.60	59.64	59.38	59.34	59.49
MART-AWP ¹	85.60	60.38	59.76	59.51	59.52	59.42	59.25	59.29
RST-AWP ¹	88.25	64.68	64.27	64.17	64.14	64.02	63.97	64.03

Attack Overhead

Step	PGD	A^2
1	19.75	20.03
10	147.09	157.61
20	287.76	302.51

Overhead in terms of clock time

Attack Effect with training epoch

Experiments

• Robustness on Benchmark

Defense	SVHN		CIFAR	-10	CIFAR-100		
	Best	Last	Best	Last	Best	Last	
AT	53.36	44.49	52.79	44.44	27.22	20.82 20.28	
AT-A ²	56.76	44.75	52.96	44.59	28.14		
AWP	59.12	55.87	55.39	54.73	30.71	30.28	
AWP-A ²	61.42	58.45	55.71	55.31	31.36	30.73	

• Robustness on WideResNet

Defense	Natural	FGSM	PGD ²⁰	CW_{∞}	AutoAttack
AT	87.30	56.10	52.68	50.73	47.04
AT-A ²	84.54	63.72	54.68	51.17	48.36
TRADES	84.65	61.32	56.33	54.20	53.08
TRADES-A ²	85.54	65.93	59.84	56.61	55.03
MART	84.17	61.61	57.88	54.58	51.10
MART-A ²	84.53	63.73	59.57	54.66	52.38
AWP	85.57	62.90	58.14	55.96	54.04
AWP-A ²	87.54	64.70	59.50	57.42	54.86

Thanks