

Presenter: Qing-Long Zhang

2022/10/16

Efficient ViTs:

- Reintroducing "Sliding Window " -> Complicated Structure
 - ① Patch input into non-overlapping windows: W-MSA
 - ② Window information communication: Swin, Shuffle Transformer, Twins, etc.
- Reducing Spatial Dimension of MSA->Lower Accuracy
 ① Downsampling K、V: PVTv1 & v2, ResTv1
 ② Downsampling Q、K、V: MViTv1 & v2

Motivation:

- Down sampling in MSA impair global dependency modeling ability
- Proposed to utilizing up-sample module to reconstruct the lost information

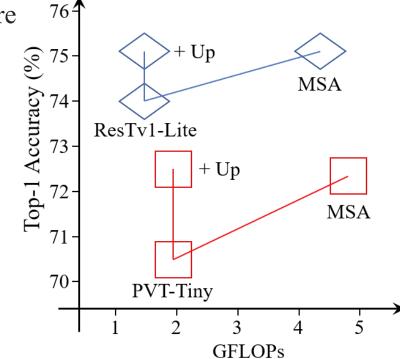
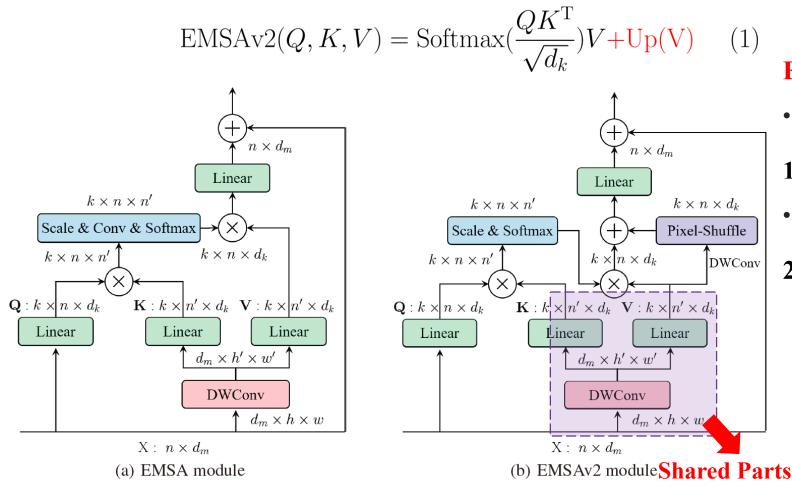


Figure 1: Top-1 Accuracy of ResT-Lite [47] and PVT-Tiny [35] under 100 epochs training settings. Results show that downsampling operation will impair the performance while adding an upsampling operation can address this issue. Detailed comparisons are shown in Appendix A.



Efficiently Combine SA and ConvNet

Sharing down-sample and linear projection

1. SA Branch: EMSA

• Eliminating multi-head interaction module

2. ConvNet Branch: Hourglass

down sample, with LN
x' = DWConv1(x)
reshape, linear, reshape
V = Linear(x')
reshape, up sample, with LN

out = nn.PixelShuffle(DWConv₂(V))

Figure 2: Comparison of EMSA in ResTv1 and EMSAv2 in ResTv2. To simplify, all normalization operators in EMSA and EMSAv2 are not displayed.

Model configurations

Table 9: Detailed architecture specifications

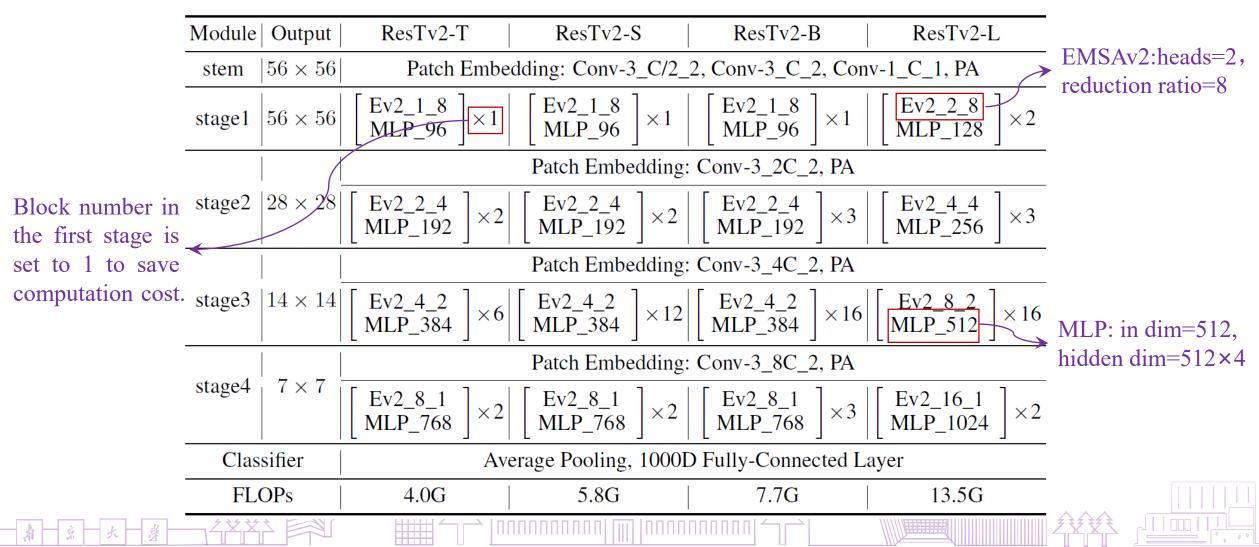


Table 1: Classification accuracy on ImageNet-1k.

Model	Image Size	Params	FLOPs	Throughput	Top-1 (%)	Top-5 (%)
RegNetY-4G [30]	224^2	21M	4.0G	1156	79.4	94.7
ConvNeXt-T [24]	224^{2}	29M	4.5G	775	82.1	95.9
Swin-T [23]	224^{2}	28M	4.5G	755	81.3	95.5
Focal-T [41]	224^{2}	29M	4.9G	319	82.2	95.9
ResTv1-B [47]	224^{2}	30M	4.3G	673	81.6	95.7
ResTv2-T	224^2	30M	4.1G	826	82.3	95.5
ResTv2-T	384^2	30M	12.7G	319	83.7	96.6
RegNetY-8G [30]	224^{2}	39M	8.0G	591	79.9	94.9
ResTv2-S	224^{2}	41M	6.0G	687	83.2	96.1
ResTv2-S	384^{2}	41M	18.4G	256	84.5	96.7
ConvNeXt-S [24]	224^{2}	50M	8.7G	447	83.1	96.4
Swin-S [23]	224^{2}	50M	8.7G	437	83.2	96.2
Focal-S [41]	224^{2}	51M	9.4G	192	83.6	96.2
ResTv1-L [47]	224^{2}	52M	7.9G	429	83.6	96.3
ResTv2-B	224^{2}	56M	7.9G	582	83.7	96.3
ResTv2-B	384^2	56M	24.3G	210	85.1	97.2
RegNetY-16G [30]	224^{2}	84M	15.9G	334	80.4	95.1
ConvNeXt-B [24]	224^{2}	89M	15.4G	292	83.8	96.7
Swin-B [23]	224^{2}	88M	15.4G	278	83.5	96.5
Focal-B [41]	224^{2}	90M	16.4G	138	84.0	96.5
ResTv2-L	224^2	87M	13.8G	415	84.2	96.5
ConvNeXt-B [24]	384^2	89M	45.0G	96	85.1	97.3
Swin-B [23]	384^2	88M	47.1G	85	84.5	97.0
ResTv2-L	384^2	87M	42.4G	141	85.4	97.1

Conclusion:

- ResTv2 outperforms the Focal counterparts, averaging ×1.8 times inference speed acceleration.
- ResTv2-T outperforms Swin-T with +1.0% Top-1 accuracy and +9.4% throughput.
- Input resolution scaling from 224 to 384, average Top-1 accuracy increased by +1.4%.

Ablation Study Table 2: Ablation experiments with ResTv2-T on ImageNet-1k (100 Epochs)

	a) Upsamp orks the be	0 0	Upsampling V
sample operation	Targets	Top-1 (%)	Top-5 (%)
	w/o	79.04	94.61
	- <i>x</i> ′	79.64 +(.6 94.90
	K	80.03 +1	.0 94.95
	V	80.33 +1	.3 95.06

(b) **Upsampling Strategies.** Pixel-Shuffle achieves better speed-accuracy trade-off.

Upsample	Params	FLOPs	Top-1 (%)	
w/o	30.26M	4.08G	79.04	
nearest	30.26M	4.08G	79.16	+0.12
bilinear	30.26M	4.08G	79.28	+0.24
pixel-shuffle	30.43M	4.10G	80.33	+1.29

(c) **ConvNet or EMSA?** Both of them can boost the performance.

(d) **Positional Embedding.** Both RPE and PA work well, but PA is more flexible.

-	Branches	Params	FLOPs Top-1	(%)	PE	Params	Top-1 (%)	_
With more blocks:	EMSA	30.26M	4.08G 79.)4	w/o	30.42M	79.94	_
Cv2: 2->3->6->2 Cv3: 2->3->6->3	ConvNet	26.11M	3.56G 77.	18	APE [11]	30.98M	79.99	_
CV3. 2-> 5-> 0-> 5	ConvNetv2	26.67M	4.09G 77.	91	RPE [31]	30.48M	80.32	
	EMSAv2	30.43M	4.10G 80.	33	PA [47]	30.43M	80.33	+0.4
	ConvNetv3	30.43M	4.54G 78.	63	PEG	30.43M	80.17	

Visualization

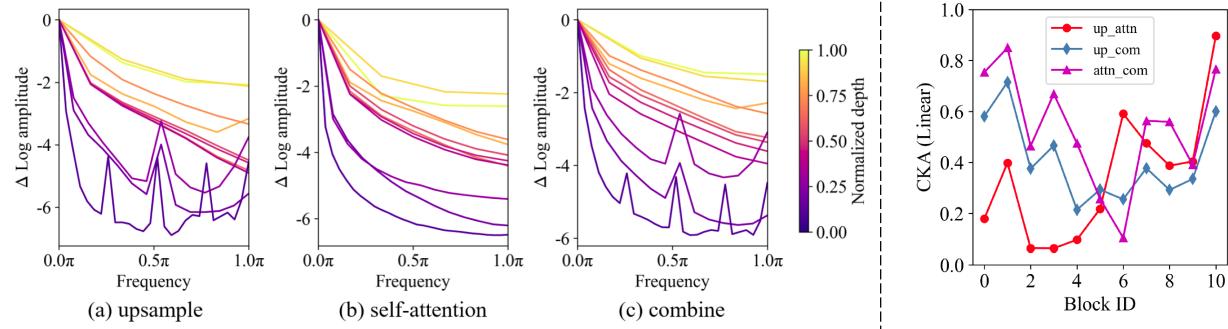


Figure 3: Relative log amplitudes of Fourier transformed feature maps. Δ Log amplitude is the difference between the log amplitude at normalized frequency 0.0π (center) and 1.0π (boundary).

- 11 different colored polylines represent 11 blocks in ResTv2-T.
- Only using half-diagonal components of shift Fourier results. 0.0π, 0.5π, and 1.0π can represent low-, medium-, and high-frequency, respectively.
- Figure 4: **Linear CKA Similarity** between EMSA, Upsample and EMSAv2 with ResTv2-T.
- "up", "attn" and "com" are short of Upsample, SA and combine (i.e., EMSAv2), respectively.

Downstream Experiments

Table 3: **Object detection results of fine-tuning styles on COCO val2017 with ResTv2-T using Mask RCNN.** Inference "ms/iter" is measured on a V100 GPU, and FLOPs are calculated with 1k validation images.

Style	Params.	FLOPs	ms/iter	$ \mathrm{AP}^{\mathrm{box}} $	AP^{mask}
Win	49.94M	205.2G	149.6	43.95	40.42
CWin	49.96M	212.5G	150.7	44.07	40.44
HWin	49.94M	218.9G	135.9	45.02	41.56
Global	49.94M	229.7G	79.9	46.13	42.03

(a) Object detection results.

(b) Detailed GFLOPs Analysis

Style	Conv	Linear	Matmul	Others
Win	119.09	82.00	3.69	0.47 •
CWin	126.29	82.00	3.69	0.47
HWin	118.57	79.71	20.17	0.45
Global	116.95	75.70	36.66	0.42

Window attention greatly reduces theoretical matrix multiply FLOPs with the cost of decreasing the computational density, resulting in lower actual speed.

- Win: Window Attention, constraining all EMSAv2 modules into fixed windows: [64, 32, 16, 8].
- CWin, HWin: After the last block in each stage, CWin adds DWConv-7×7, and HWin replaces Win with global attention to enable information to communicate across windows.
- Global: Global Attention, directly adopts ViTs into downstream tasks.

Downstream Experiments

Table 5: **ADE20K validation results using UperNet.** Following Swin, we report mIoU results with multiscale testing. FLOPs are based on input sizes of (2048, 512).

Backbones	input crop.	mIoU	Params.	FLOPs	FPS
ResNet-50 [15]	512^{2}	42.8	66.5M	952G	23.4
ConvNeXt-T [24]	512^{2}	46.7	60.2M	939G	19.9
Swin-T [23]	512^{2}	45.8	59.9 M	941G	21.1
ResTv2-T	512^{2}	47.3	62.1M	977G	22.4
ResNet-101 [15]	512^{2}	44.9	85.5M	1029G	20.3
ConvNeXt-S [24]	512^{2}	49.0	81.9M	1027G	15.3
Swin-S [23]	512^{2}	49.2	81.3M	1038G	14.7
ResTv2-S	512^{2}	49.2	72.9M	1035G	20.0
ResTv2-B	512^{2}	49.6	87.6M	1095G	19.2

Table 4: COCO object detection and segmentation results using Mask-RCNN. We measure FPS
on one V100 GPU. FLOPs are calculated with image size (1280, 800).I

Backbones	$\mathrm{AP}^{\mathrm{box}}$	$\mathrm{AP}^{\mathrm{mask}}$	Params.	FLOPs	FPS
ResNet-50 [15]	41.0	37.1	44.2M	260G	24.1
ConvNeXt-T [24]	46.2	41.7	48.1M	262G	23.4
Swin-T [23]	46.0	41.6	47.8M	264G	21.8
ResTv2-T	47.6	43.2	49.9M	253G	25.0
ResNet-101 [15]	42.8	38.5	63.2M	336G	13.5
Swin-S [23]	48.5	43.3	69.1M	354G	17.4
ResTv2-S	48.1	43.3	60.7M	290G	21.3
ResTv2-B	48.7	43.9	75.5M	328G	18.3

• Experimental results on COCO detection, and ADE20K semantic segmentation show that the proposed ResTv2 can outperform the recently state-of-the-art backbones by a large margin.

Conclusion

- We proposed ResTv2, a simpler, faster, and stronger multi-scale vision Transformer for image recognition.
- ResTv2 adopts an up-sample module in EMSAv2 to reconstruct the lost information due to the down-sample operation.
- Different techniques for better applying ResTv2 to downstream tasks. Results show that the theoretical FLOPs are not a good reflection of actual speed, particularly running on GPUs.

Thank You

敬请各位老师同学批评指正!

诚耀百世韵 雄创一流

HH

ппппппппп

HITT