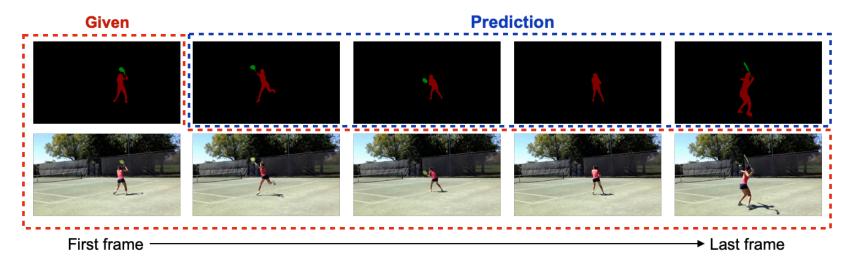
## Decoupling Features in Hierarchical Propagation for Video Object Segmentation


Zongxin Yang, Yi Yang





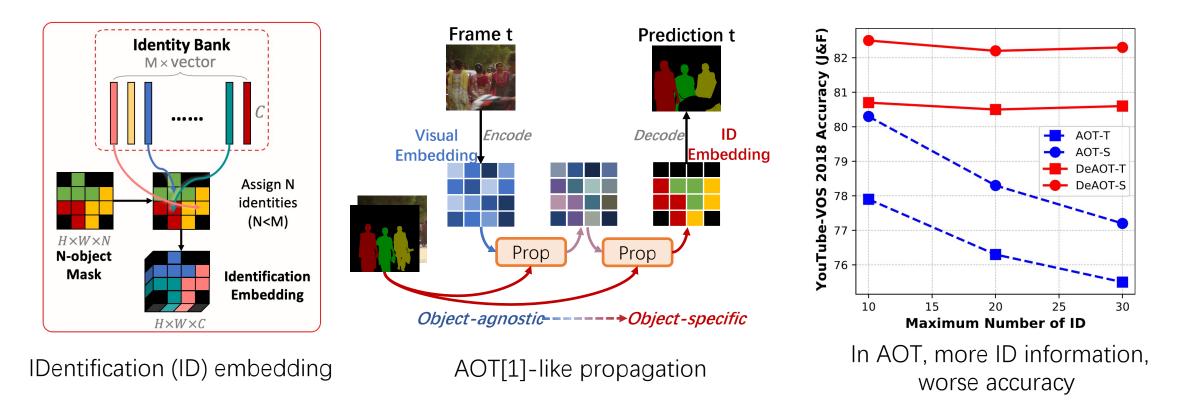
Task

Semi-supervised Video Object Segmentation (VOS)








Multi-object (panoptic) results

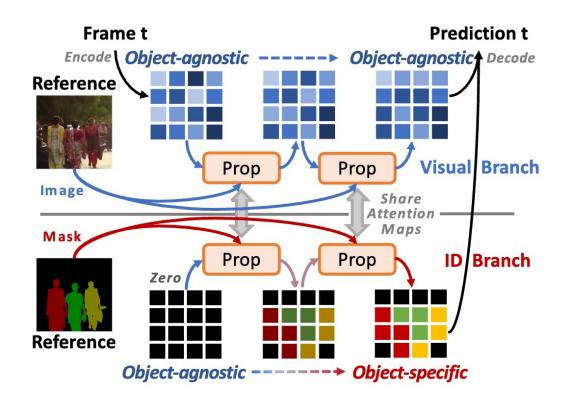




## **Revisit Hierarchical Propagation for VOS**

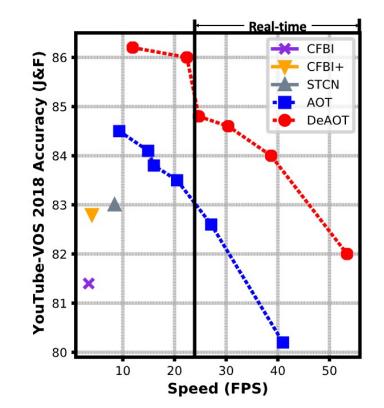
Absorbing the ID information leads to the oblivion of visual information




[1] Yang, Zongxin, Yunchao Wei, and Yi Yang. "Associating objects with transformers for video object segmentation." NeurIPS 2021






## **Our Solution: Decoupling Features**

Decouple object-agnostic and object-specific informations

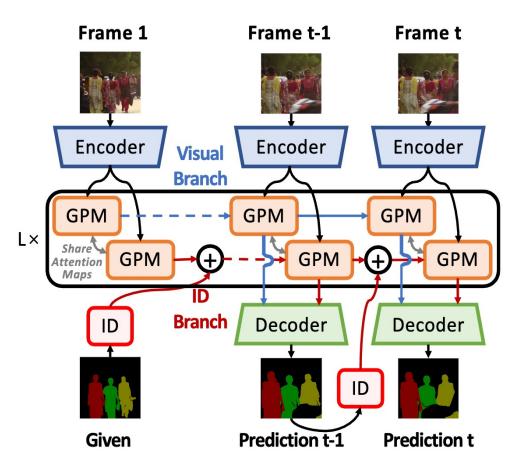


Decoupling Features in Hierarchical Propagation (DeAOT)





DeAOT variants achieve superior accuracy and efficiency

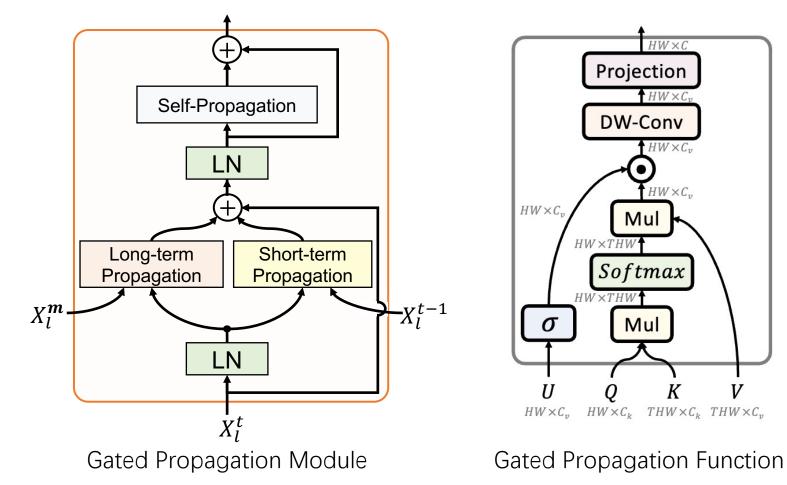



### **Decoupling Features in Hierarchical Propagation**

Overview

Our DeAOT decouples the propagation of visual embedding and ID embedding in two branches, i.e., Visual Branch and ID Branch.

The efficient propagation module, Gated Propagation Module (**GPM**), shares attention maps between two branches.





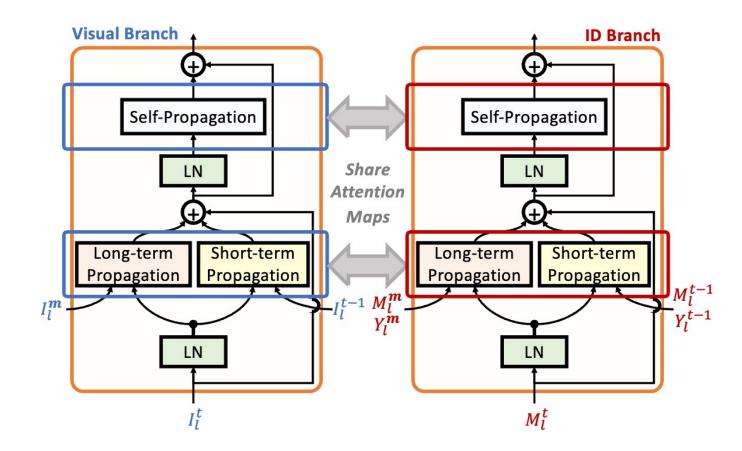



## Gated Propagation Module

For efficient hierarchical propagation



|                       | Robustness | Computation |
|-----------------------|------------|-------------|
| Multi-head attention  | Good       | Heavy       |
| Single-head attention | Limited    | Light       |
| Gated<br>propagation  | Good       | Light       |


Gated propagation improves single-head attention by light-weight gated process and depth-wise convolution (DW-Conv)





# **Dual-branch Propagation**

For decoupling visual and identification embeddings



- Visual Branch: calculate attention maps, propagate visual embedding
- ID Branch: reuse the attention maps from Visual Branch, propagate ID embedding





### Results: Multi-object benchmarks

Compare DeAOT variants with SOTA methods

|                                                                  | YouTube-VOS (large-scale) DAVIS 2017 (small-scale) |                      |                      |                      |                     |                      |                      |                     | e)                   |                      |                     |                      |                      |                      |                     |                |                      |                                  |        |                  |
|------------------------------------------------------------------|----------------------------------------------------|----------------------|----------------------|----------------------|---------------------|----------------------|----------------------|---------------------|----------------------|----------------------|---------------------|----------------------|----------------------|----------------------|---------------------|----------------|----------------------|----------------------------------|--------|------------------|
|                                                                  | Yo                                                 | ouTube               | e-VOS                | 2018                 | Val                 |                      | YouT                 | ube-V               | OS 20                | 19 Val               |                     | DA                   | VIS-17               | Val                  |                     | DAVIS          | 5-17 Te              | est                              |        |                  |
| Method                                                           | Avg                                                | $\mathcal{J}_S$      | $\mathcal{F}_S$      | $\mathcal{J}_U$      | $\mathcal{F}_U$     | Avg                  | $\mathcal{J}_S$      | $\mathcal{F}_S$     | $\mathcal{J}_U$      | $\mathcal{F}_U$      | fps                 | Avg                  | ${\mathcal J}$       | ${\cal F}$           | Avg                 | ${\mathcal J}$ | $\mathcal{F}$        | fps                              |        |                  |
| KMN[ECCV20] [43]<br>CFBI[ECCV20] [62]<br>SST[CVPR21] [17]        | 81.4                                               | 81.4<br>81.1<br>81.2 | 85.6<br>85.8<br>-    | 75.3<br>75.3<br>76.0 | 83.3<br>83.4        | -<br>81.0<br>81.8    | -<br>80.6<br>80.9    | -<br>85.1<br>-      | -<br>75.2<br>76.6    | -<br>83.0<br>-       | 3.4                 | 82.8<br>81.9<br>82.5 | 79.3                 |                      |                     |                | 80.3<br>80.1         | -<br>2.9<br>-                    | more   | DeAOT-L:         |
| HMMN[ICCV21] [44]<br>CFBI+[TPAMI21] [64]<br>STCN[NeurIPS21] [11] | 82.6<br>82.8                                       |                      | 87.0<br>86.6<br>86.5 | 76.8<br>77.1<br>77.9 | 85.7                | 82.5<br>82.6<br>82.7 | 81.7<br>81.7<br>81.1 | 86.2<br>85.4        | 77.3<br>77.1<br>78.2 | 85.0<br>85.2<br>85.9 | -<br>4.0<br>8.4*    | 84.7<br>82.9<br>85.4 | 81.9<br>80.1<br>82.2 | 87.5<br>85.7<br>88.6 | 1                   | 74.4<br>72.7   | 82.5<br>81.6<br>79.6 | 3.4 <sup>‡</sup><br>3.4<br>19.5* |        | state-of-the-art |
| RPCM[AAAI22] [58]                                                | 84.0                                               |                      | 87.7                 | 78.5                 | 86.7                | 83.9                 |                      |                     | 79.1                 | 87.1                 | 41.0                | 83.7                 | 81.3                 | 86.0                 | 79.2                |                | 82.6                 | - 51.4                           | GPM    |                  |
| DeAOT-T                                                          | 82.0                                               | 81.6                 |                      | 75.8                 | 84.2                | 82.0                 | 81.2                 | 85.6                | 76.4                 | <b>84.</b> 7         | 53.4                | 80.5                 | 77.7                 | 83.3                 | 73.7                | 70.0           | 77.3                 | 63.5                             | Number |                  |
| AOT-S [63]<br>DeAOT-S                                            | 82.6<br><b>84.0</b>                                |                      | 86.7<br><b>88.3</b>  | 76.6<br><b>77.9</b>  |                     |                      | 81.3<br><b>82.8</b>  | 85.9<br><b>87.5</b> |                      | 84.9<br><b>86.8</b>  |                     | <b>81.3</b> 80.8     |                      | <b>83.9</b><br>83.8  | 73.9<br><b>75.4</b> |                | 77.5<br><b>79.0</b>  | 40.0<br><b>49.2</b>              |        |                  |
| AOT-B [63]<br>DeAOT-B                                            |                                                    | 82.6<br><b>83.9</b>  | 87.5<br><b>88.9</b>  | 77.7<br><b>78.5</b>  | 86.0<br><b>87.0</b> |                      | 82.4<br><b>83.5</b>  |                     | 77.8<br><b>79.1</b>  | 86.0<br><b>87.5</b>  |                     | <b>82.5</b><br>82.2  |                      | <b>85.2</b><br>85.1  | 75.5<br>76.2        |                |                      | 29.6<br><b>40.9</b>              |        | DeAOT-T:         |
| AOT-L [63]<br>DeAOT-L                                            | 83.8<br><b>84.8</b>                                | 82.9<br><b>84.2</b>  | 87.9<br><b>89.4</b>  | 77.7<br><b>78.6</b>  | 86.5<br><b>87.0</b> |                      | 82.8<br><b>83.8</b>  | 87.5<br><b>88.8</b> |                      | 86.7<br>87.2         | 16.0<br><b>24.7</b> |                      | <b>81.1</b><br>81.0  | 86.4<br><b>87.1</b>  | <b>78.3</b><br>77.9 |                |                      | 18.7<br><b>28.5</b>              | less   | real-time        |
| R50-AOT-L [63]<br>R50-DeAOT-L                                    | 84.1<br><b>86.0</b>                                | 83.7<br><b>84.9</b>  | 88.5<br><b>89.9</b>  | 78.1<br><b>80.4</b>  | 86.1<br><b>88.7</b> | 84.1<br><b>85.9</b>  | 83.5<br><b>84.6</b>  | 88.1<br><b>89.4</b> | 78.4<br>80.8         | 86.3<br><b>88.9</b>  | 14.9<br><b>22.4</b> | 84.9<br>85.2         |                      | 87.5<br><b>88.2</b>  | 79.6<br><b>80.7</b> |                | 83.3<br><b>84.5</b>  | 18.0<br><b>27.0</b>              |        |                  |
| SwinB-AOT-L [63]<br>SwinB-DeAOT-L                                | 84.5<br>86.2                                       | 84.3<br><b>85.6</b>  | 89.3<br><b>90.6</b>  | 77.9<br><b>80.0</b>  | 86.4<br><b>88.4</b> |                      | 84.0<br><b>85.3</b>  |                     | 78.4<br><b>80.4</b>  | 86.7<br><b>88.6</b>  | 9.3<br>11.9         | 85.4<br>86.2         | 82.4<br><b>83.1</b>  | 88.4<br><b>89.2</b>  |                     |                | 85.1<br><b>86.7</b>  | 12.1<br><b>15.4</b>              |        |                  |





### Results: Single-object benchmarks

Compare DeAOT variants with SOTA methods

DAVIS 2016: Video Object Segmentation

VOT 2020: Visual Object Tracking

|                  |      | DAV            | (S 201      | VOT 2020 |       |                |  |
|------------------|------|----------------|-------------|----------|-------|----------------|--|
| Method           | Avg  | ${\mathcal J}$ | ${\cal F}$  | fps      | EAO   | $  EAO^{RT}  $ |  |
| CFBI+ [64]       | 89.9 | 88.7           | 91.1        | 5.9      | -     | -              |  |
| RPCM [58]        | 90.6 | 87.1           | 94.0        | 5.8      | -     | -              |  |
| HMMN [44]        | 90.8 | 89.6           | 92.0        | 10.0     | -     | -              |  |
| STCN [11]        | 91.6 | 90.8           | 92.5        | 27.2*    | -     | -              |  |
| AlphaRef [59]    | -    | -              | -           | -        | 0.482 | 0.486          |  |
| RPT [33]         | -    | -              | -           | -        | 0.530 | 0.290          |  |
| MixFormer-L [14] | -    | -              | -           | -        | 0.555 | -              |  |
| AOT-T [63]       | 86.8 | 86.1           | 87.4        | 51.4     | 0.435 | 0.433          |  |
| DeAOT-T          | 88.9 | <b>87.8</b>    | <b>89.9</b> | 63.5     | 0.472 | 0.463          |  |
| AOT-S [63]       | 89.4 | 88.6           | 90.2        | 40.0     | 0.512 | 0.499          |  |
| DeAOT-S          | 89.3 | 87.6           | 90.9        | 49.2     | 0.593 | 0.559          |  |
| AOT-B [63]       | 89.9 | 88.7           | 91.1        | 29.6     | 0.541 | 0.533          |  |
| DeAOT-B          | 91.0 | 89.4           | 92.5        | 40.9     | 0.571 | 0.542          |  |
| AOT-L [63]       | 90.4 | 89.6           | 91.1        | 18.7     | 0.574 | 0.560          |  |
| DeAOT-L          | 92.0 | 90.3           | 93.7        | 28.5     | 0.591 | 0.554          |  |
| R50-AOT-L [63]   | 91.1 | 90.1           | 92.1        | 18.0     | 0.569 | 0.540          |  |
| R50-DeAOT-L      | 92.3 | 90.5           | 94.0        | 27.0     | 0.613 | 0.571          |  |
| SwinB-AOT-L [63] | 92.0 | 90.7           | 93.3        | 12.1     | 0.586 | 0.523          |  |
| SwinB-DeAOT-L    | 92.9 | 91.1           | 94.7        | 15.4     | 0.622 | 0.559          |  |

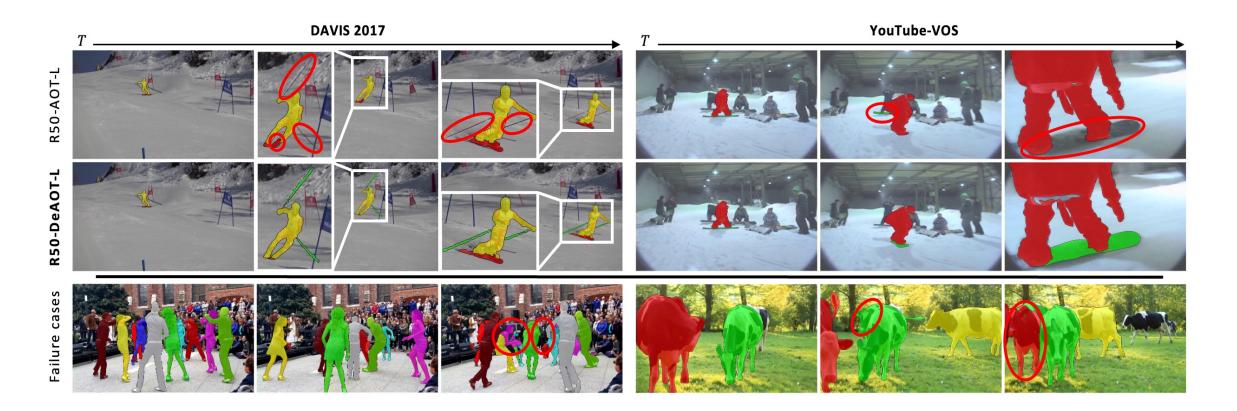
more DeAOT-L:

GPM

Number

less

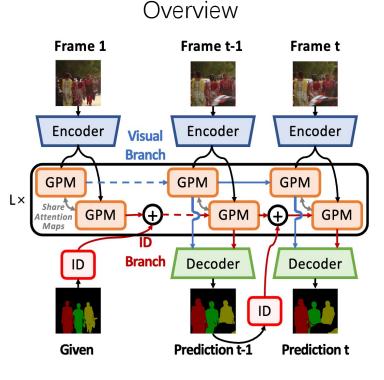
state-of-the-art


DeAOT-T: real-time

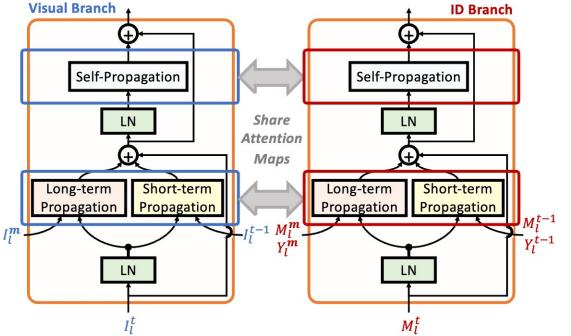




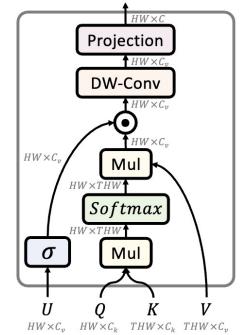
### Results: Qualitative Results


Compare DeAOT variants with SOTA methods









#### **Decoupling Features in Hierarchical Propagation**



Dual-branch Propagation



Gated Propagation





