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Our Goal
Reconstruct high-quality human models in a sparse (e.g., 3 RGBD sensors) capture setting.

Azure Kinect sensors

…
…  N (e.g, 3)× RGB Images × N (e.g, 3)

Depth Maps × N (e.g, 3)

… …

……

N : number of views

3D human model

THuman2.0-Dataset : https://github.com/ytrock/THuman2.0-Dataset Collet et al. High-quality streamable free-viewpoint video (ACM TOG 2015)

Capturing is Expensive Users Friendly



Due to ill-posed properties (e.g., severe occlusion, input noise) in the very sparse capture settings, 
deep learning-based methods are applied to human reconstruction.
• Explicit shape regression : SiCloPe [CVPR 2019],  DeepHuman [ICCV 2019],  NormalGAN [ECCV 2020] …
• Learning Implicit fields : PIFu [ICCV 2019],  StereoPIFu [CVPR 2021],  Function4D [CVPR 2021] …
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The reconstructed quality of the existing implicit methods is still unsatisfactory under the sparse capture settings.

Our Observations and Contributions

Raw RGBD (1/3 views) RGBD-PIFu PIFuHD IPNet Ours

body body body body

face face face face

Saito et al.  PIFu : Pixel-aligned implicit function for high-resolution clothed human digitization ( ICCV 2019 )
Saito et al.  PIFuHD : Multi-level pixel-aligned implicit function for high-resolution 3d human digitization ( CVPR 2020 )

Bhatnagar et al.  Combining implicit function learning and parametric models for 3d human reconstruction ( ECCV 2020 )

• Body geometries with topology errors (depth noise is amplified under sparse views)
• Lack of high-frequency details (e.g., Flat or incorrect facial surfaces,  hair geometries)



Multi-task Formulation
The two tasks, depth denoising and 3D reconstruction are complementary to each other. 

• Image-to-image depth denoising : preserves local geometric fidelity, prone to introducing incorrect details
• PIFu-based 3D reconstruction : provides global topology guidance, lacking high-frequency local details

Raw RGBD (1/3 views) Only reconstruction 

Predicted depth maps 
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Only depth denoising Multi-task manner 3D mesh [Multi-task]

Inputs



Multi-task Formulation
Proposed : formulate depth denoising and body reconstruction processes in a multi-task learning manner to
exploit their complementary properties.
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• Depth denoising and Occupancy estimation tasks share the image(s) features

Body-part reconstruction in a multi-task manner from RGBD pixels 

Yu et al. Function4D: Real-time Human Volumetric Capture from Very Sparse Consumer RGBD Sensors (CVPR 2021)



PIFu-Body and PIFu-Face
A function  of high complexity may not be easy to express, but it is much easier to approximate  piecewise 
(e.g., in two parts) for high-frequency information.
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• Face surface typically contains more high-frequencies (e.g., vivid expression) 
   than other parts, and plays a vital role when assessing the reconstruction quality

Face and body reconstruction based on piecewise (two parts) approximation
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PIFu-Body and PIFu-Face
Proposed : express the implicit function  in a piecewise manner (i.e., PIFu-Body:  and PIFu-Face:  ) to 
reduce the complexity of joint occupancy estimation while producing vivid facial and body details. 

Fθ Fb Ff

• The PIFu-Face   is conditioned on the high-resolution face image and the denoised facial depth mapFf
•   can be pretrained on the existed 3d Face Dataset (e.g., FaceScape) to introduce stronger priorsFf
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Face-to-body Occupancy Fields Fusion
Simply merging the reconstructed face and body (i.e., replacing body occupancy value :  with face occupancy 
value :   for the facial points) would result in the discontinuity artifacts at the stitching.

ob
of

Simply merging face and body 

Adaptive face-to-body Fusion (Ours)
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Proposed : fuse the face and body occupancy fields ( ,  ) via adaptive weights  calculated in 3D space.Ob Of ω

Weights of 3D Points (Face Region)

Front LeftRight

Our Fusion Weight Map: Mf e

I.  In x-y plane, compute a 2D fusion weight map via eroding edges of the facial mask
II.  Along z axis, compute the weights through a Gaussian distribution model of the PSDF values

Facial 3D point X

Refined facial depth2D projection x 

 α

α

Depth unprojection

Facial Points Selection

For the facial point X, the fused occupancy value : 

o(X) = ω ⋅ of(X) + (1 − ω) ⋅ ob(X)



Pipeline Overview
I. PIFu-Body :  predicts the body field  and the refined depth maps from sparse and noisy RGBDs
II. PIFu-Face :  obtains the fine-grained face field , using the refined depth from  and the high-resolution face RGB
III.  Face-to-body Fusion :  reconstructs full human model by fusing  and 

Fb Ob
Ff Of Fb

W Ob Of

Depth

Depth RGB

Input Raw RGBD

Body Occupancy
Values

= 1

= 0

GT Occupancy 
(Body)

Face RGB

Face Refined Depth

Original RGBD

DownSample

Cropped

Image(s) Feature

Pixel-aligned

2D Decoder

Depth Denoising

Refined Depth

Z

GT Depth

Featp PIFu-based reconstruction

d

d

Trunc ( Z d  )- d

Fb ( Z, , d )

Pixel-aligned

 Point: x, z
A

PIFu-Body : Fb

( Multi-task manner )Encoder

d

Face Occupancy
Values

= 0

= 1Face Feature Map

Pixel-aligned

Z

Featp

Trunc ( Z d  )- d
Pixel-aligned d

Ff ( Z, , d )
Face implicit function

 Point in face region: x, z

A

High-resolution
PIFu-Face : FfEncoder

GT Occupancy 
(Face)

Body Model

Face Model

Final Full Model ( front & back )

Face-to-body Fusion

GT Depth

Refined Depth



Geometry-aware Features
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The encoded image(s) features aim to exploit the 
complementary properties of depth denoising and 
occupancy field estimation.

• Two HRNets are used to encode the RGB and Depth data 
respectively for handling modal discrepancy

• A novel Cross Attention Module (CAM) is proposed to 
fuse RGB and Depth top-level backbone features

• A novel Geometry Aware Module (GAM) is proposed to 
enrich the CAM output features with high-frequency 
information

• The enhanced features and the fused low-level features 
form the Geometry-aware Features



CAM and GAM
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• Fuse the RGB and depth features by computing their 
non-local correlations

• Calculate the depth contrasted features to enrich the 
fused features with high-frequency information



Results
Our reconstructed results under various poses of different human bodies :

Front BackFront BackFront Back Front Back Front Back

Face

Body

Raw RGBD Refined Depths RGBD-PIFu PIFuHD IPNet DoubleFusion Function4D Ours

Qualitative comparisons on our captured real data :

Refer to our paper for more experiments and results



Demos
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Thank you for watching !


