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| Motivation

Problem: In label-noise learning, estimating the transition matrix plays an important role in building statistically
consistent classifier. Current state-of-the-art consistent estimator for the transition matrix has been developed under
the newly proposed sufficiently scattered assumption, through incorporating the minimum volume constraint of the
transition matrix T into label-noise learning. To compute the volume of T, it heavily relies on the estimated noisy
class posterior. However, the estimation error of the noisy class posterior could usually be large as deep learning
methods tend to easily overfit the noisy labels.

Solution: We propose to estimate the transition matrix under a forward-backward cycle-consistency regularization,
of which we have greatly reduced the dependency of estimating the transition matrix T on the noisy class posterior.

Problem Settings:

Clean data distribution: (X,Y)

Noisy data distribution: (X,Y)  Training data: D:= (x5, Y,)Hq
Noisy class-posterior probability: P(Y|X)

Clean class-posterior probability: P(Y|X)

Transition Matrix: T;;(x) = P(Y =j|Y =i, X = x)
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| Main Contributions

This paper proposes a class-dependent label-noise learning with cycle-consistency regularization,
which creatively propose to estimate the transition matrix under a forward-backward cycle-consistency
regularization, of which we have greatly reduced the dependency of estimating the transition matrix T
on the noisy class posterior:

» We propose to estimate the transition matrix T under a forward-backward cycle-consistency regularization, of
which we could greatly reduce the dependency of minimizing the volume of the transition matrix T on the
estimated noisy class posterior.

» We show that such cycle-consistency regularization could help to minimize the volume of the transition matrix
T without directly exploiting the estimated noisy class posterior, which encourages the estimated transition
matrix T to converge to the optimal solution.

» Experimental results on four datasets (two synthetic and two real-world datasets) with different label-noise
settings consistently justify the effectiveness of the proposed method, on reducing the estimation error of the
transition matrix and greatly improving the classification performance.
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Figure 1. The proposed Cycle-Consistency regularization label-noise learning framework.

Overall Objective Function:
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| Methodology

» Forward Transition Matrix;

Given the training dataset D = {(x;, 7;)})_,, we optimize the empirical risk by jointly optimizing the
transition matrix T and the consistent classifier f (x; w) for label-noise learning. Specifically, we

minimize the approximation error between the inferred noisy class-posterior probability Tf (x; w)

N
P T) =~ FHog(T - £ w)
» Backward Transition Matrix: -
Minimizing the volume of the transition matrix is equivalent to maximizing the volume of the clean
class posterior. We directly use the noisy labels to maximize the volume of the clean class posterior.
Intuitively, we maximize the volume of the learned clean class posteriors by matching it with the

projected C-dimensional simplex in the noisy class posterior which also needs to estimate.

mlan(w T = ——z f(x;; w)log(T' - SoftMax(y;))
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| Methodology

» Cycle-Consistency Regularization:

we build an “indirect” cycle-consistency through minimizing the difference between P(Y|X = x) and
T'(TP (Y|X = x)) , where “indirect” means that we would make use of the invertible relationship
between these two matrices T and T ' indirectly through the original and circularly computed clean

class-posterior.

N
1
m“i,nLg,(w; T,T") = —sz(xi;w)log(T’(T - f(x;;wW)))
i=1



EXxperiments

O Comparison with SOTAs On Two Synthetic Datasets With Symmetry Noise.

Cifar-10 CIFAR-100

Method Sym-207% Sym-40%% Sym-60%% Sym-20% Sym-40% Sym-607%
CE (baseline) 8458+ 0.18 80.784+-0.38 68.31+0.33 | 51.93 £0.39 40.11+:0.86 25.81+0.74
GCE [40] 89.31 £0.07 86.61+0.23 79.40+=0.41 | 66.07+0.24 59.03+0.21 45.68+ 0.39
PeerLoss [17] 88.78 £0.18 8487+ 0.15 75.284+0.31 | 57.344+0.34 43.39+ 0.33 28.66+ 0.67
Co-teaching [6] 85.76 £0.26  83.12+ 0.31 70.89+ 1.06 | 56.83+ 0.28 43.38+ 0.51 28.04+ 0.69
Co-teaching++ [38] | 86.39+0.33  83.80+0.30 72.51+046 | 57.644+0.34 4428+0.83 29.60+1.16
T-Revision [33] 88.01+0.16  84.52+0.11  71.534+0.82 | 62.66+0.53 55.254+0.36 39.94+1.28
VolMinNet [13] 89.69+0.19 85.46+£0.19 73.554+0.78 | 64.70+£0.60 56.254+0.45 41.06+£0.45
DualT [37] 89.88+0.13 86.23+0.64 72214+1.67 | 65.75+£0.38 56.804+0.18 42.56+0.55
T-For(1T") 89.53+0.11 85.38+0.13  73.01+0.54 | 64.234+0.64 56.02+0.39 40.89+0.37
T-Back(T") 88.40+0.12 84.97+0.16 73.124+0.79 | 63.394+0.62 54964043 41.154+0.82
T+T 89.64+0.16 8547+0.32 73.394+040 | 64.95+£091 56.36+0.51 41.9440.43
Ours 90.44+0.19 87.30+0.25 81.01+025 | 67.74+0.17 61.71+0.20 49.30+0.82

O Comparison with SOTAs On Two Synthetic Datasets With Asymmetry Noise.

Cifar-10 CIFAR-100
Method Asym-20%  Asym-40%  Asym-00% | Asym-20%  Asym-407  Asym-G07%
CE (baseline) 84.71+0.21 81.26+0.04 68.40+1.16 | 52.164+0.37 40.21+0.23 26.56+0.64
GCE [40] 89.54+0.21 85954040 79554051 | 65.66+£0.73  57.34+0.35 4546+0.16
PeerLoss [17] 88.98+0.15 85.61+0.59 77.034+049 | 57.514+0.05 43.95+0.35 30.02+0.39
Co-teaching [6] 85.90+0.38 83.09+044 71.69+0.50 | 57.214+0.37 43.76+0.46 30.18+£0.71
Co-teaching++ [38] | 87.13+£0.07 84864036 73.50+047 | 58.79+£0.35 45264041 32.02+1.22
T-Revision [33] 87.99+0.32  85.17+0.07 72934027 | 63.9440.19 57.19+£1.28 42.36+1.09
VolMinNet [13] 89.62+0.15 86.12+0.16  74.8040.15 | 65.914+0.25 58354035 42.164+0.94
DualT [37] 89.36+0.44 86.59+0.30 78.894+099 | 65.76+0.56 56.90+0.39 44.61+1.20
T-For (T') 89.46+:0.21 85.74+0.11 745440.12 | 65.30+0.01 56.31+0.42 42214058
T-Back (T") 89.97+0.14 85.81+0.31 73404081 | 64.56+0.34 55.09+0.55 41.73+0.73
T+T 89.62+0.24 86.254+0.03 74.80+0.21 | 65.524+0.28 57.10+£0.20 42.724+0.29
Ours 90.55+0.03 87.29+0.05 82.5840.24 | 68.34+0.24 62.64+£0.49 50.29+0.24
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| Experiments

O Comparison with SOTAs On Real-world Noisy Datasets.

Classification accuracy (%) on the ClothinglM dataset. Classification accuracy (%) on the Food101N dataset.

Methods | CE (Baseline) GCE [40] SL [26] Co-teaching [6] JointOpt [23] Loner [35) Methods CE (Baseline)  CleanNetyy g [10] CleanNetyy 5 [10] DeepSelf [7] MNoiseResist [14] VolMinNet* [13]
Accuracy 68.94 69.75 71.02 69.21 72.16 72.46 Accuracy 81.44 B3.47 83.95 83.11 84.70 83.04
Methods | PTD-R-V [32] ERL [15] ForwardT [20] JoCor [27] CORES [5] CAL [41] Methods | DivideMix* [11] Ours DivideMix+T-For (77  DivideMix+T-Back (T") DivideMix+VolMinNet  DivideMix+Ours
ACCUF&CF 71.67 7287 69.84 70.30 73.24 T4.17 ."\ECI.'I['L'I.C}' #4.39 8371 B5.07 8483 B5.07 86.11
Methods | MEIDTM [4]  VolMinNer* [13] Ours DivideMix* [11] DivideMix+VolMinNet DivideMix+Ours
Accuracy 73.05 69.82 T0.73 14.67 T4.83 75.12

O Ablation Study

Compare the estimation error of T between our method and other transition Shows classification accuracy with various values of A on CIFAR-10
matrix based methods with symmetry noise on CIFAR-10.

CIFAR-10, Sym-0.4 CIFAR-10, Sym-0.4
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