

PointTAD: Multi-Label Temporal Action Detection with Learnable Query Points

Jing Tan^{1*}, Xiaotong Zhao², Xintian Shi², Bin Kang², Limin Wang^{1,3†}

¹State Key Laboratory for Novel Software Technology, Nanjing University ²Platform and Content Group (PCG), Tencent ³Shanghai Al Lab

Problem Temporal Action Detection (TAD)

 Detecting the temporal span and class label of actions in untrimmed videos.

Problem Temporal Action Detection (TAD)

- Non-overlapping instances
- Single-label annotations

Problem Temporal Action Detection (TAD)

Mainstream approaches:

Real-world scenario: different classes of actions often co-occur in videos!

Problem Multi-label Temporal Action Detection

- A more challenging TAD setup
 - Concurrent instances
 - Complex action relations

Annotated Actions: (gray if not active) Someone is cooking something Turning on a light

Opening a refrigerator

Taking a cup/glass/bottle from somewhere Closing a refrigerator Holding a cup/glass/bottle of something Drinking from a cup/glass/bottle

Groundtruths

			-	4		
			39.0s	Run	43.4s	
34.6	is BodyCon	tact 35.4s				

source: https://prior.allenai.org/projects/charades

Related work Segment-based TAD methods

Segment-based TAD methods either capture incomplete action segments or get misclassified over good localization.

								\$		
Groun	dtruths						39.0s	Run	43.4s	
			34.6	is BodyC <mark>o</mark>	ntact 35.	4s				
			31.5s	Jump	36.2s					me
	24.0s	Si	t			39.0s				
Predictions						(39.0s,	43.8s, W	/alk)		
						1	(38.8s,	43.9s, R	un)	
			S2	(32.2s, 36.	3s, Sit)					
			S1 (3	32.1s, 34.1	s, Jump)					
	(25.7s, 3	32.4s, Run)								
(24.0s, 25.0s, Sit)						listake S1	Mistak	e S2	Other Mis	stakes

Our approach

• We introduce Learnable Points to handle both boundary frames and semantic keyframes of actions.

Method Overview

Method Learnable Query Points

Method Learnable Query Points

- Learning Query Points with pseudo segments
 - Point to segment transformation $\mathcal{T}: \mathcal{P} = \{t_j\}_{j=1}^{N_s} \to \mathcal{S} = (t^s, t^e)$

Method Multi-level Interactive Module

- Point-level local deformation
- Instance-level adaptive mixing

Method Multi-level Interactive Module

• Point-level local deformation: capture local temporal cue.

Method Multi-level Interactive Module

- Instance-level adaptive mixing: explore frame relations and channel dynamics
 - Channel-wise and frame-wise dynamic convolution in parallel

Results

- Quantitative comparison
 - Introduced detection-mAP from classic TAD for instance-wise detection evaluation.

Table 1: **Comparison with the state of the art** on the MultiTHUMOS test set and Charades test set, under detection-mAP (%) and segmentation-mAP(%).

Methods	Modality	MultiT	HUMOS	Charades		
		Det-mAP	Seg-mAP	Det-mAP	Seg-mAP	
R-C3D [44]	RGB	-	-	-	17.6	
Super-event [29]	RGB	-	36.4	-	18.6	
TGM [30]	RGB	-	37.2	-	20.6	
TGM [<u>30</u>]	RGB+OF	-	44.3	-	21.5	
PDAN [9]	RGB	17.3/17.1*	40.2	8.5	23.7	
Coarse-Fine [16]	RGB	! - i	-	6.1	25.1	
MLAD [40]	RGB	14.2/13.9*	42.2	-	18.4	
MLAD [40]	RGB+OF	-	51.5	-	23.7	
CTRN [7]	RGB	-	44.0	-	25.3	
CTRN 7	RGB+OF	-	51.2	-	27.8	
AGT [27]	RGB+OF	-	-	-	28.6	
MS-TCT [8]	RGB	16.2/16.0*	43.1	7.9	25.4	
Ours	RGB	21.5/21.4*	39.8	11.1	21.0	

NEURAL INFORMATION PROCESSING SYSTEMS

• Qualitative comparison

- More precise temporal boundaries
- More instances detected at harder categories

* indicates detection results excluding NoHuman class.

Visualization

• For highly overlapping groundtruths, local query points capture different frames for different actions.

Thanks for your attention!

Code is available at https://github.com/MCG-NJU/PointTAD

