

and the state of the state of the

Haotian Zhang^{*1}, Pengchuan Zhang^{*2}, Xiaowei Hu³, Yen-Chun Chen³, Liunian Harold Li⁴, Xiyang Dai³, Lijuan Wang³, Lu Yuan³, Jenq-Neng Hwang¹, Jianfeng Gao³

¹University of Washington, ²Meta AI, ³Microsoft, ⁴UCLA

General Purpose Vision Models

Grounded VL Understanding

- General Purpose Vision Model requires Unification: Localization & VL Understanding
 - 1) Localization Tasks: Vision-only, fine-grained outputs.
 - 2) VL Understanding Tasks: Both modalities, high-level semantic outputs.
- To achieve mutual benefits; simplify pre-training procedure; reduce pretraining cost – "Grounded VL Understanding"

GLIP: Grounded Language-Image Pre-training

- NEURAL INFORMATION PROCESSING SYSTEMS
- GLIP_[2]: A Unified Framework for Detection and Grounding

- Reformulate the **Object Detection** task as **Phrase Grounding** task.
- Pre-train the model with scalable and semantic-rich grounded data.

[2] Li Liunian*, Pengchuan Zhang*, Haotian Zhang*, et al. "Grounded Language-Image Pre-training.", CVPR2022 (Best Paper Finalist) 3

Potential Limitations during Pre-training in GLIP

Query: Santa Claus climbing stairs

• Limitation: *Intra*-image region-word Contrastive Loss

- The supervision signal becomes weak, when the caption is not long, and entities are not a lot.
- To make the pre-training tasks become harder and let the model better learn the information from selftrained image-text pair data...

<u>A stronger VL pre-training task</u>: *Inter*-Image region-word Contrastive Loss

- Further increase the number of negative samples for across instances.
- 'Shallow' features directly from image and text encoder. Not after Fusion.
- <u>Goal</u>: Learn more discriminative region-word features.

Label Propagation

- Different from the standard Contrastive Loss, e.g., CLIP_[3].
- Only propagate positives to detection-type texts
- Not propagate positives to grounding-type texts

Standard Contrastive Loss (No label propagation)

Annotated positives

Prompt: jellyfish. penguin. puffin. shark. starfish. Stingray.

Input: Where is a push vacuum? Prediction: on floor Gold: background

Generated Caption: a group of people riding bikes down a street.

GLIPv2 **Unified Outputs**

• Performance

One model architecture

Model	Model Type	COCO-Det (test-dev)	ODinW (test)	LVIS (minival)	COCO-Mask (test-dev)	Flickr30K (test)	PhraseCut (test)	VQA (test-dev / test-std)	Captioning (Karpathy-test)
Mask R-CNN (23)		39.8	-	33.3 / -	-/37.1	-	-	-	-
DETR (9)	Localization	42.0	-	17.8 / -	-	-	-	-	-
DyHead-T (15)		49.7	60.8	-	-	-	-	-	-
DyHead-L (15)		60.3*	-	-	-	-	-	-	-
VisualBERT (34)		-	-	-	-	71.33	-	70.8 / 71.0	-
UNITER (12)	Understanding	-	-	-	-	-	-	73.8 / 74.0	-
VinVL (58)	0	-	-	-	-	-	-	76.5 / 76.6	130.8
GPV (21)		-	-	-	-	-	-	62.5 / -	102.3
UniT (24)	Localization & Understanding	42.3	-	-	-	-	-	67.6 / -	-
MDETR (25)		-	-	24.2 / -	-	84.3	53.7	70.6 / 70.6	-
Unicorn (55)	-	-	-	-	-	80.4	-	69.2 / 69.4	119.1
GLIP-T (36)	Localization &	55.2	64.9	-	-	85.7	-	-	-
GLIP-L (36)	Understanding	61.5*	68.9	-	-	87.1	-	-	-
GLIPv2-T (Ours)	Localization	55.5	66.5	50.6/41.4	53.5 / 42.0	86.5	59.4	71.6 / 71.8	122.1
GLIPv2-B (Ours)	&	58.8	6 <u>9.4</u>	57.3/46.2	59.0/45.8	87.5	61.3	73.1 / 73.3	128.5
GLIPv2-H (Ours)	Understanding	60.6 (62.4*)	70.4	59.8 / 48.8	59.8 / 48.9	87.7	61.3	74.6 / 74.8	131.0

Table 1: One model architecture results. For COCO-Det test-dev, * indicates multi-scale evaluation. For LVIS, we report the numbers for both bbox and segm on minival to avoid data contamination due to the pre-training. For Flickr30K test, we report the metric under R@1. For COCO-Mask, we also report both bbox and segm on test-dev.

- Performance
 - One set of weights for localization tasks

 	Direct Evaluation				Prompt Tuning					
Model	COCO-Mask (minival)	ODinW (test)	LVIS-Det (minival)	Flickr30K (minival)	COCO-Det (test-dev)	ODinW (test)	LVIS (minival)	COCO-Mask (test-dev)	PhraseCut (test)	
GLIP-T	46.6/-	46.5	26.0	85.7		46.5				
GLIP-L	49.8/-	52.1	37.3	87.1	58.8	67.9	-			
GLIPv2-T	47.3 /35.7	48.5	29.0	86. 0	53.4 (21)	64.8 (-1.7)	49.3/34.8 (-13/ 66)	53.2/41.2 (03/ 08)	49.4	
GLIPv2-B	61.9 [†] /43.4	54.2	48.5	87.2	59.0 (+0.2)	67.3 (-2.1)	56.8 / 41.7 (-0.5 / -4.5)	58.8 / 44.9 (-0.2 / -0.9)	55.9	
GLIPv2-H	64.1 ⁺ /47.4	55.5	50.1	87.7	60.2 / 61.9 * (-0.4 / -0.5)	69.1 (-1.3)	59.2 / 43.2 (-0.6 / -5.7)	59.8 / 47.2 (-0.0 / -1.7)	56.1	

Table 2: One set of weights results v.s. Original GLIP. * indicates multi-scale evaluation. Numbers in red clearly points out the difference between the prompt tuning and full fine-tuning results (see Table 1). Numbers in gray mean that they are not in *zero-shot* manner. †: these two numbers are artificially high due to some overlap between COCO-minival and VisualGenome-train.

"Object Detection in the Wild"

Explainable grounded VQA & Image Captioning

Visual Question Answering (VQA)

a blue rope

Input: Where is the strainer? [MASK] Prediction: counter Gold: counter Input: What is the man wearing? [MASK] Prediction: jacket Gold: ski suit Input: Where is a push vacuum? [MASK] Prediction: on floor Gold: background

a stree

Generated Caption: a man riding a motorcycle on a dirt road.

Generated Caption: a group of people riding bikes down a street.

Generated Caption: a man in a yellow shirt is holding a blue rope.

Prompt: person. dog ... backpack. umbrella, horse, toothbrush,

Prompt: person. hairdryer ... baseball bat. baseball glove. bottle. toothbrush.

Prompt: person. cup. sink ... microwave. refrigerator. bear.

77 CT T A woman figure skater in a blue costume holds her leg by the blade of her skater Prompt: A woman figure skater in a

blade of her skate

blue costume holds her leg by the

Prompt: person. chair. dining table ... potted plant. vase.

Generated Caption: a man riding a motorcycle on a dirt road.

Prompt: person. hairdryer ... baseball bat, baseb

Prompt: donut. wineglass ... banana. pineapple.

Generated Caption: a group of people

riding bikes down a street.

COCO-Mask

Prompt: person. cup. sink microwave. refrigerator. bear.

LVIS

Prompt: person. teddy bear lollipop. flower.

COCO-Caption

ODinW

VQA

Prompt: fish. jellyfish. penguin. puffin, shark, starfish, stingray

Input: Where is the strainer? [MASK] Prediction: counter Gold: counter

Prompt: 2 couples are eating dinner on the floor behind a large plant.

on the floor behind a large plant.

Prompt: dog. person.

Input: What is the man wearing? [MASK] Prediction: jacket Gold: ski suit

Input: Where is a push vacuum? [MASK] Prediction: on floor Gold: background

Generated Caption: a man in a yellow

shirt is holding a blue rope.

11

Follow Ups

• 2nd 'Computer Vision in the Wild' Workshop @ CVPR 2023 (in Preparing)

https://computer-vision-in-the-wild.github.io/eccv-2022/

• For more details about our paper, please refer to the following links:

GLIPv2 Paper

GLIPv2 Code

Hugging Face Demo

Q&A

Thank you!

ILLI