

BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework

Tingting Liang, Hongwei Xie, Kaicheng Yu, Zhongyu Xia, Zhiwei Lin, Yongtao Wang, Tao Tang, Bing Wang, Zni Tang **NeurIPS 2022** | Peking University, DAMO Academy,

3D Object Detection In autonomous driving

Bird's-Eye-View (BEV)

Necessary of Fusing Camera & LiDAR Camera-only: lack of depth information

Difficult to regress 3D bounding boxes

Necessary of Fusing Camera & LiDARCamera-only:LiDAR-only:lack of depth informationlack of semantic information

Difficult to regress 3D bounding boxes

Difficult to classify objects

Necessary of Fusing Camera & LiDAR LiDAR-Camera Fusion

Challenges of Fusing Camera & LiDAR Current LiDAR-Camera Fusion methods depend highly on the point cloud of the LiDAR sensor

(a) Point-level Fusion

Challenges of Fusing Camera & LiDAR Current LiDAR-Camera Fusion methods depend highly on the point cloud of the LiDAR sensor

Camera Network

(b) Feature-level Fusion

Challenges of Fusing Camera & LiDAR Current LiDAR-Camera Fusion methods depend highly on the point cloud of the LiDAR sensor

Camera Network

(b) Feature-level Fusion

BEVFusion A Simple and Robust LiDAR-Camera Fusion Framework

Disentangle the two modalities during fusion Choose a suitable unified coordinate system

(c) Our BEVFusion

BEVFusion A Simple and Robust LiDAR-Camera Fusion Framework

- coordinate system
- Both modalities work complementary to each other

(c) Our BEVFusion

BEVFusion **A Simple and Robust LiDAR-Camera Fusion Framework**

th modalities work nplementary to each other

Methods Overall Framework

Methods Camera Stream

Methods LiDAR Stream

Methods Fusion Prediction

Methods Camera Stream

Methods LiDAR Stream

Methods Dynamic Fusion Module

Methods Prediction Head

Experiments Generalization

3.0%-18.4%mAP over three popular methods.

Modality		Point	Pillars	Cente	rPoint	TransFusion-L		
Camera	LiDAR	mAP	NDS	mAP	NDS	mAP	NDS	
\checkmark		22.9	31.1	27.1	32.1	22.7	26.1	
	\checkmark	35.1	49.8	57.1	65.4	64.9	69.9	
\checkmark	\checkmark	53.5	60.4	64.2	68.0	67.9	71.0	

On nuScenes validation set, BEVFusion boosts single modality streams by

Experiments Robustness

Under limited Field-of-View (FOV), la large margin by 18.6-25.1% mAP.

		Po	intPillars	Ce	nterPoint			
FOV	Metrics	LiDAR	†BEVFusion	LiDAR	†BEVFusion	LiDAR	†BEVFusion	LC
$(-\pi/2, \pi/2)$	mAP	12.4	36.8 (+24.4)	23.6	45.5 (+21.9)	27.8	46.4 (+18.6)	31.1
	NDS	37.1	45.8 (+8.7)	48.0	54.9 (+6.9)	50.5	55.8 (+5.3)	49.2
$(-\pi/3, \pi/3)$	mAP	8.4	33.5 (+25.1)	15.9	40.9 (+25.0)	19.0	41.5 (+22.5)	21.0
	NDS	34.3	42.1 (+7.8)	43.5	49.9 (+6.4)	45.3	50.8 (+5.5)	41.2

• Under limited Field-of-View (FOV), BEVFusion improves its LiDAR stream by

Experiments Robustness

 Under camera malfunctions, BEVFul LiDAR-camera fusion methods.

	Cle	ean	Miss	Missing F		erve F	Stuck		
Approach	mAP	NDS	mAP	NDS	mAP	NDS	mAP	NDS	
DETR3D[53]	34.9	43.4	25.8	39.2	3.3	20.5	17.3	32.3	
PointAugmenting[47]	46.9	55.6	42.4	53.0	31.6	46.5	42.1	52.8	
MVX-Net[43]	61.0	66.1	47.8	59.4	17.5	41.7	48.3	58.8	
TransFusion[2]	66.9	70.9	65.3	70.1	64.4	69.3	65.9	70.2	
BEVFusion	67.9	71.0	65.9	70.7	65.1	69.9	66.2	70.3	

Under camera malfunctions, BEVFusion outperforms camera-only and other

Experiments Comparison with SOTA

Method	Modality	mAP	NDS	Car	Truck	C.V.	Bus	Trailer	Barrier	Motor.	Bike	Ped.	T.C.
FUTR3D [5]	LC	64.2	68.0	86.3	61.5	26.0	71.9	42.1	64.4	73.6	63.3	82.6	70.1
BEVFusion	LC	67.9	71.0	88.6	65.0	28.1	75.4	41.4	72.2	76.7	65.8	88.7	76.9
BEVFusion*	LC	69.6	72.1	89.1	66.7	30.9	77.7	42.6	73.5	79.0	67.5	89.4	79.3
PointPillars[20]	L	30.5	45.3	68.4	23.0	4.1	28.2	23.4	38.9	27.4	1.1	59.7	30.8
CBGS[67]		52.8	63.3	81.1	48.5	10.5	54.9	42.9	65.7	51.5	22.3	80.1	70.9
CenterPoint[59] [†]	L	60.3	67.3	85.2	53.5	20.0	63.6	56.0	71.1	59.5	30.7	84.6	78.4
TransFusion-L [1]	L	65.5	70.2	86.2	56.7	28.2	66.3	58.8	78.2	68.3	44.2	86.1	82.0
PointPainting[46]	LC	46.4	58.1	77.9	35.8	15.8	36.2	37.3	60.2	41.5	24.1	73.3	62.4
3D-CVF[61]	LC	52.7	62.3	83.0	45.0	15.9	48.8	49.6	65.9	51.2	30.4	74.2	62.9
PointAugmenting[47] [†]	LC	66.8	71.0	87.5	57.3	28.0	65.2	60.7	72.6	74.3	50.9	87.9	83.6
MVP[60]	LC	66.4	70.5	86.8	58.5	26.1	67.4	57.3	74.8	70.0	49.3	89.1	85.0
FusionPainting[55]	LC	68.1	71.6	87.1	60.8	30.0	68.5	61.7	71.8	74.7	53.5	88.3	85.0
TransFusion[1]	LC	68.9	71.7	87.1	60.0	33.1	68.3	60.8	78.1	73.6	52.9	88.4	86.7
BEVFusion (Ours)	LC	69.2	71.8	88.1	60.9	34.4	69.3	62.1	78.2	72.2	52.2	89.2	85.2
BEVFusion (Ours)*	LC	71.3	73.3	88.5	63.1	38.1	72.0	64.7	78.3	75.2	56.5	90.0	86.5

† These methods exploit double-flip during the test time. The best and second best results are marked in red and blue.
Notion of class: Construction vehicle (C.V.), pedestrian (Ped.), traffic cone (T.C.). Notion of modality: Camera (C), LiDAR (L).
* These methods exploit BEV-space data augmentation during training.

Conclusion: LiDAR-Camera Fusion

- Limitation of previous methods
 - Dependency of LiDAR inputs
- Our BEVFusion
 - Disentangle LiDAR / camera modality into two independent streams
 - Good generalization ability
 - Effective and robust

Thanks!

