coVariance Neural Networks

Saurabh Sihag¹, Gonzalo Mateos², Corey McMillan¹, Alejandro Ribeiro¹

¹University of Pennsylvania

²University of Rochester

• Graph filter^[a]

 h_k : filter taps

Graph filter of order K supported on undirected graph $S = RFR^T$

.....

coVariance filter

Graph filter^[a]

 h_k : filter taps

Graph filter of order K supported on undirected graph $S = RFR^T$

.....

Spectral representation of graph filter H(S)

$$\mathbf{R}^{\mathsf{T}}\mathbf{H}(\mathbf{S}) \mathbf{x} = \sum_{k=0}^{K-1} \mathbf{h}_{k} \mathbf{F}^{k} \mathbf{R}^{\mathsf{T}} \mathbf{x}$$

$$= \mathbf{h}(\mathbf{F}) \mathbf{R}^{\mathsf{T}} \mathbf{x}$$
filter frequency response

coVariance filter

Graph filter^[a]

 h_k : filter taps

Graph filter of order K supported on undirected graph $S = RFR^T$

.....

Spectral representation of graph filter H(S)

$$\mathbf{R}^{\mathsf{T}}\mathbf{H}(\mathbf{S}) \ \mathbf{x} = \sum_{k=0}^{K-1} h_k \mathbf{F}^k \ \mathbf{R}^{\mathsf{T}}\mathbf{x}$$

$$= \underbrace{h(\mathbf{F})}_{\mathbf{T}} \ \mathbf{R}^{\mathsf{T}}\mathbf{x}$$
filter frequency response

coVariance filter

For an m-dimensional dataset of n samples, $\mathbf{x}_n \in \mathbb{R}^{m \times n}$, sample covariance matrix $\mathbf{C}_n = \frac{1}{n} (\mathbf{x}_n - \bar{\mathbf{x}}_n) (\mathbf{x}_n - \bar{\mathbf{x}}_n)^\mathsf{T}$

$$z = \sum_{k=0}^{K-1} h_k C_n^k x$$

$$z = H(C_n)x$$

coVariance filter of order K supported on sample covariance matrix $\mathbf{C}_n = \mathbf{U}\mathbf{W}\mathbf{U}^\mathsf{T}$

Graph filter^[a]

 h_k : filter taps

Graph filter of order K supported on undirected graph $S = RFR^T$

.....

Spectral representation of graph filter H(S)

$$\mathbf{R}^{\mathsf{T}}\mathbf{H}(\mathbf{S}) \mathbf{x} = \sum_{k=0}^{K-1} \mathbf{h}_{k} \mathbf{F}^{k} \mathbf{R}^{\mathsf{T}} \mathbf{x}$$

$$= \mathbf{h}(\mathbf{F}) \mathbf{R}^{\mathsf{T}} \mathbf{x}$$
filter frequency response

coVariance filter

For an m-dimensional dataset of n samples, $\mathbf{x}_n \in \mathbb{R}^{m \times n}$, sample covariance matrix $\mathbf{C}_n = \frac{1}{n} (\mathbf{x}_n - \bar{\mathbf{x}}_n) (\mathbf{x}_n - \bar{\mathbf{x}}_n)^\mathsf{T}$

$$z = \sum_{k=0}^{K-1} h_k C_n^k x$$

$$z = H(C_n)x$$

coVariance filter of order K supported on sample covariance matrix $\mathbf{C}_n = \mathbf{U}\mathbf{W}\mathbf{U}^\mathsf{T}$

Spectral representation of coVariance filter $H(C_n)$

$$egin{aligned} \mathbf{U}^\mathsf{T}\mathbf{H}(\mathbf{C}_n) \ \mathbf{x} &= \sum\limits_{k=0}^{K-1} h_k \mathbf{W}^k \ \mathbf{U}^\mathsf{T}\mathbf{x} \ &= h(\mathbf{W}) \ \mathbf{U}^\mathsf{T}\mathbf{x} \end{aligned}$$

Graph filter^[a]

 h_k : filter taps

Graph filter of order K supported on undirected graph $S = RFR^T$

.....

Spectral representation of graph filter H(S)

$$\mathbf{R}^{\mathsf{T}}\mathbf{H}(\mathbf{S}) \mathbf{x} = \sum_{k=0}^{K-1} \mathbf{h}_{k} \mathbf{F}^{k} \mathbf{R}^{\mathsf{T}} \mathbf{x}$$

$$= \mathbf{h}(\mathbf{F}) \mathbf{R}^{\mathsf{T}} \mathbf{x}$$
filter frequency response

coVariance filter

For an m-dimensional dataset of n samples, $\mathbf{x}_n \in \mathbb{R}^{m \times n}$, sample covariance matrix $\mathbf{C}_n = \frac{1}{n} (\mathbf{x}_n - \bar{\mathbf{x}}_n) (\mathbf{x}_n - \bar{\mathbf{x}}_n)^\mathsf{T}$

$$z = \sum_{k=0}^{K-1} h_k C_n^k x$$

$$z = H(C_n)x$$

coVariance filter of order K supported on sample covariance matrix $\mathbf{C}_n = \mathbf{U}\mathbf{W}\mathbf{U}^\mathsf{T}$

Spectral representation of coVariance filter $H(C_n)$

$$\mathbf{U}^{\mathsf{T}}\mathbf{H}(\mathbf{C}_{n}) \mathbf{x} = \sum_{k=0}^{K-1} h_{k} \mathbf{W}^{k} \mathbf{U}^{\mathsf{T}}\mathbf{x}$$
$$= h(\mathbf{W}) \mathbf{U}^{\mathsf{T}}\mathbf{x} \rightarrow \mathsf{PCA}!!$$

Advantages over PCA:

- **Stability** to perturbations
- Transferability

Graph Neural Networks and coVariance Neural Networks

Graph Neural Networks^[b]

 $\sigma(\cdot)$: pointwise non-linearity function (e.g. ReLU, tanh)

Graph Neural Networks and coVariance Neural Networks

Graph Neural Networks^[b]

 $\sigma(\cdot)$: pointwise non-linearity function (e.g. ReLU, tanh)

[b] Ruiz, Luana, Fernando Gama, and Alejandro Ribeiro. "Graph neural networks: architectures, stability, and transferability." *Proceedings of the IEEE* 109.5 (2021): 660-682.

Graph Neural Networks and coVariance Neural Networks

Graph Neural Networks^[b]

 $\sigma(\cdot)$: pointwise non-linearity function (e.g. ReLU, \tanh)

coVariance Neural Networks (VNN)

Stability and transferability extend to VNNs

[b] Ruiz, Luana, Fernando Gama, and Alejandro Ribeiro. "Graph neural networks: architectures, stability, and transferability." *Proceedings of the IEEE* 109.5 (2021): 660-682.

Perturbation Theory of Covariance Matrix

• Sample covariance matrix \mathbb{C}_n is estimate of ensemble covariance matric \mathbb{C}

$$\mathbf{C}_n = \frac{1}{n} (\mathbf{x}_n - \bar{\mathbf{x}}_n) (\mathbf{x}_n - \bar{\mathbf{x}}_n)^\mathsf{T}$$

$$\mathbf{C}_n = \frac{1}{n} (\mathbf{x}_n - \bar{\mathbf{x}}_n) (\mathbf{x}_n - \bar{\mathbf{x}}_n)^\mathsf{T}$$
 $\mathbf{C} = \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}]) (\mathbf{x} - \mathbb{E}[\mathbf{x}])^\mathsf{T}]$

Eigenvalues: w_1, \ldots, w_m

Eigenvectors: $\mathbf{u}_1, \dots, \mathbf{u}_m$

Eigenvalues: $\lambda_1, \ldots, \lambda_m$

Eigenvectors: $\mathbf{p}_1, \dots, \mathbf{p}_m$

Perturbation Theory of Covariance Matrix

• Sample covariance matrix \mathbb{C}_n is estimate of ensemble covariance matric \mathbb{C}

$$\mathbf{C}_n = \frac{1}{n} (\mathbf{x}_n - \bar{\mathbf{x}}_n) (\mathbf{x}_n - \bar{\mathbf{x}}_n)^\mathsf{T}$$
 $\mathbf{C} = \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}]) (\mathbf{x} - \mathbb{E}[\mathbf{x}])^\mathsf{T}]$

Eigenvalues: w_1, \ldots, w_m

Eigenvectors: $\mathbf{u}_1, \dots, \mathbf{u}_m$

Eigenvalues: $\lambda_1, \ldots, \lambda_m$

Eigenvectors: $\mathbf{p}_1, \dots, \mathbf{p}_m$

ullet Perturbations in eigenvalues and eigenvectors scale with sample size, $n^{[c]}$

1.
$$\mathbb{P}\left(\frac{|w_i - \lambda_i|}{\lambda_i} \le t\right) \ge 1 - \frac{1}{n} \left(\frac{k_i}{\lambda_i t}\right)^2$$

Perturbation Theory of Covariance Matrix

• Sample covariance matrix \mathbb{C}_n is estimate of ensemble covariance matric \mathbb{C}

$$\mathbf{C}_n = \frac{1}{n} (\mathbf{x}_n - \bar{\mathbf{x}}_n) (\mathbf{x}_n - \bar{\mathbf{x}}_n)^\mathsf{T}$$

$$\mathbf{C}_n = \frac{1}{n} (\mathbf{x}_n - \bar{\mathbf{x}}_n) (\mathbf{x}_n - \bar{\mathbf{x}}_n)^\mathsf{T}$$
 $\mathbf{C} = \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^\mathsf{T}]$

Eigenvalues: w_1, \ldots, w_m

Eigenvectors: $\mathbf{u}_1, \dots, \mathbf{u}_m$

Eigenvalues: $\lambda_1, \ldots, \lambda_m$

Eigenvectors: $\mathbf{p}_1, \dots, \mathbf{p}_m$

• Perturbations in eigenvalues and eigenvectors scale with sample size, $n^{[c]}$

1.
$$\mathbb{P}\left(\frac{|w_i - \lambda_i|}{\lambda_i} \le t\right) \ge 1 - \frac{1}{n} \left(\frac{k_i}{\lambda_i t}\right)^2$$

2.
$$\mathbb{P}\left(|\mathbf{u_i}^{\mathsf{H}}\mathbf{p_j}| \leq t\right) \geq 1 - \frac{1}{n} \left(\frac{2k_j}{t|\lambda_i - \lambda_j|}\right)^2 \longrightarrow$$

Eigenvectors with close eigenvalues are more likely to be confused with each other for small changes (addition or removal of samples) in the dataset

Stability of coVariance filters and VNN

Theorem 1 (Stability of coVariance filters)

Consider a random vector $\mathbf{X} \in \mathbb{R}^{m \times 1}$, such that, its corresponding covariance matrix is given by $\mathbf{C} = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\mathsf{T}}]$. For a sample covariance matrix \mathbf{C}_n formed using n i.i.d instances of \mathbf{X} and a random instance \mathbf{x} of \mathbf{X} , such that, $\|\mathbf{x}\| \leq 1$ under appropriate assumptions, the following holds with probability at least $1 - n^{-2\varepsilon} - 2\kappa m/n$ for any $\varepsilon \in (0, 1/2]$:

$$\|\mathbf{H}(\mathbf{C}_n) - \mathbf{H}(\mathbf{C})\| = \frac{M}{n^{\frac{1}{2} - \varepsilon}} \cdot \mathcal{O}\left(\sqrt{m} + \frac{\|\mathbf{C}\|\sqrt{\log mn}}{k_{\min}n^{2\varepsilon}}\right) .$$

Stability of coVariance filters and VNN

Theorem 1 (Stability of coVariance filters)

Consider a random vector $\mathbf{X} \in \mathbb{R}^{m \times 1}$, such that, its corresponding covariance matrix is given by $\mathbf{C} = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\mathsf{T}}]$. For a sample covariance matrix \mathbf{C}_n formed using n i.i.d instances of \mathbf{X} and a random instance \mathbf{x} of \mathbf{X} , such that, $\|\mathbf{x}\| \leq 1$ under appropriate assumptions, the following holds with probability at least $1 - n^{-2\varepsilon} - 2\kappa m/n$ for any $\varepsilon \in (0, 1/2]$:

$$\|\mathbf{H}(\mathbf{C}_n) - \mathbf{H}(\mathbf{C})\| = \frac{M}{n^{\frac{1}{2} - \varepsilon}} \cdot \mathcal{O}\left(\sqrt{m} + \frac{\|\mathbf{C}\|\sqrt{\log mn}}{k_{\min}n^{2\varepsilon}}\right) .$$

Theorem 2 (Stability of coVariance neural networks)

Consider a sample covariance matrix \mathbf{C}_n and the ensemble covariance matrix \mathbf{C} . Given a bank of coVariance filters $\{\mathbf{H}_{fg}^\ell\}$, such that $|h_{fg}^\ell(\lambda)| \leq 1$ and a pointwise non-linearity $\sigma(\cdot)$, such that, $|\sigma(a) - \sigma(b)| \leq |a - b|$, if the covariance filters satisfy

$$\|\mathbf{H}_{fg}^{\ell}(\mathbf{C}_n) - \mathbf{H}_{fg}^{\ell}(\mathbf{C})\| \le \alpha_n ,$$

for some $\alpha_n > 0$, then, we have

$$\|\Phi(\mathbf{x}; \mathbf{C}_n, \mathcal{H}) - \Phi(\mathbf{x}; \mathbf{C}), \mathcal{H})\| \le LF^{L-1}\alpha_n$$
.

Regression with PCA

 \mathbf{U} : Principal components from \mathbf{C}_n

(\mathbf{C}_n : sample covariance matrix from n samples)

Regression with VNN

Regression with PCA

 \mathbf{U} : Principal components from \mathbf{C}_n

(\mathbf{C}_n : sample covariance matrix from n samples)

Regression with VNN

Regression with PCA

 \mathbf{U} : Principal components from \mathbf{C}_n

(\mathbf{C}_n : sample covariance matrix from n samples)

Regression with VNN

Add k samples to dataset

V: Principal components from C_{n+k}

Outputs are prone to instability: $\|\mathbf{C}_{n+k} - \mathbf{C}_n\| \ll \|\mathbf{V} - \mathbf{U}\|$

Regression with PCA

 \mathbf{U} : Principal components from \mathbf{C}_n

(\mathbf{C}_n : sample covariance matrix from n samples)

Regression with VNN

Add k samples to dataset

 ${f V}$: Principal components from ${f C}_{n+k}$

Outputs are prone to instability: $\|\mathbf{C}_{n+k} - \mathbf{C}_n\| \ll \|\mathbf{V} - \mathbf{U}\|$

Provably stable:
$$\|\Phi(\mathbf{x}; \mathbf{C}_n; \mathcal{H}) - \Phi(\mathbf{x}; \mathbf{C}_{n+k}; \mathcal{H})\| = \mathcal{O}\left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+k}}\right)$$

Stability of VNN: Experiments

• Comparison against PCA-regression cortical thickness dataset (m = 104) from (n = 341) human subjects

Objective: Regression of cortical thickness against chronological age (307/34 training/test split)

Metrics: MAE (mean absolute error), correlation between predicted age and true age

Stability of VNN: Experiments

• Comparison against PCA-regression cortical thickness dataset (m = 104) from (n = 341) human subjects

Objective: Regression of cortical thickness against chronological age (307/34 training/test split)

Metrics: MAE (mean absolute error), correlation between predicted age and true age

Stability of VNN: Experiments

• Comparison against PCA-regression cortical thickness dataset (m = 104) from (n = 341) human subjects

Objective: Regression of cortical thickness against chronological age (307/34 training/test split)

Metrics: MAE (mean absolute error), correlation between predicted age and true age

Transferability of VNN

• Parameters to be learnt (filter taps) are independent of covariance matrix dimension

Transferability of VNN

• Parameters to be learnt (filter taps) are independent of covariance matrix dimension

• Transferability of learnt parameters to datasets/ covariance matrix of different dimension

Transferability of VNN

• Parameters to be learnt (filter taps) are independent of covariance matrix dimension

Transferability of learnt parameters to datasets/ covariance matrix of different dimension

Transferability of VNN: Experiments

- Multi-resolution cortical thickness datasets for 170 human subjects
 - FTDC100 (dimension = 100)
 - FTDC300 (dimension = 300)
 - FTDC500 (dimension = 500)

Objective: Regression of cortical thickness against chronological age

Transferability of VNN: Experiments

- Multi-resolution cortical thickness datasets for 170 human subjects
 - FTDC100 (dimension = 100)
 - FTDC300 (dimension = 300)
 - FTDC500 (dimension = 500)

Objective: Regression of cortical thickness against chronological age

Test	MAE		
Train	FTDC100	FTDC300	FTDC500
FTDC100	-	5.38 ±0.044	5.47 ±0.047
FTDC300	5.33 ±0.28	-	5.57±0.32
FTDC500	5.35 ±0.05	5.38 ±0.04	-

MAE: mean absolute error

Conclusions

- Study of VNNs as GNN operating on covariance matrices as graphs
- VNNs are stable to perturbations in datasets, implying reproducibility
- Transferability of VNNs shown empirically