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Graph Filters and coVariance Filters

* Graph filterf@  coVariance filter

K—1

z = H(S)x

Graphsignal X ] z = Z hy S* x RN (5)
k=0

hy: filter taps
Graph filter of order K supported on undirected graph S= RFR'

[a] Ortega, Antonio, et al. "Graph signal processing: Overview, challenges, and applications." Proceedings
of the IEEE 106.5 (2018): 808-828.
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e coVariance filter

For an m-dimensional dataset of n samples, x,, € R™*"™,

sample covariance matrix C,,= £ (x, — Xy )(Xp — Xp) '
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x z:thC:x —> ()
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coVariance filter of order K supported on
sample covariance matrix C,,= UWU"
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e coVariance filter

For an m-dimensional dataset of n samples, x,, € R™*"™,

sample covariance matrix C,,= £ (x, — Xy )(Xp — Xp) '

z = H(C,)x
x z:thC:x —> ()

coVariance filter of order K supported on
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Spectral representation of coVariance filter H(C,,)

K-1
UTH(C,) x = Z hi,W* UTx

_____ W) U'x |—> PCA!

Advantages over PCA:
- Stability to perturbatlons
I - Transferability




Graph Neural Networks and coVariance Neural Networks

* Graph Neural Networks!®]

—

K—1 .
—_— Z=th5kx z a[z] xS, h)
k=0

Perceptron

o(-): pointwise non-linearity function (e.g. RelLU, tanh)

[b] Ruiz, Luana, Fernando Gama, and Alejandro Ribeiro. "Graph neural networks: architectures,
stability, and transferability." Proceedings of the IEEE 109.5 (2021): 660-682.
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* Graph Neural Networks!®]

Xp = X
K—1 . 2
21:Zh1k5x > xlza[zl}
k=0
Layer 1
VX]'
X1
2
K—1 p z5
ZQ:Z thS X1 > XQ:O'[ZQ}
k=0
Layer 2
VXI
X1
2
K—1 p z3
Z3=Zh3ks X2 > X3:O’[Z3:|
k=0
Layer 3
LX:}, = ®(x; S, H)
o(-): pointwise non-linearity function (e.g. RelLU, tanh)

[b] Ruiz, Luana, Fernando Gama, and Alejandro Ribeiro. "Graph neural networks: architectures,
stability, and transferability." Proceedings of the IEEE 109.5 (2021): 660-682.
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coVariance Neural Networks (VNN)

Xp = X
= k z]
21:Zh1kcnx > xlza[zl]
k=0
Layer 1
X1
X1
\
= k Z2
22:Zh2kcnx1 > X2:O'|:22]
k=0
Layer 2
X
" 2
X2
\
“ k Z3
Z3=Zh3kCnX2 > X3:0'|:Z3:|
k=0

L Layer 3
x3 = ®&(x; Cp, H)

Stability and transferability extend to VNNs



Perturbation Theory of Covariance Matrix

e Sample covariance matrix C,, is estimate of ensemble covariance matric C

C,= %(Xn — in)(xn — }_(n)T C= 4:[(X _ 4:[X])(X o 4:[X])T]

Eigenvalues: w1, ..., w,, Eigenvalues: A\i,..., A\,
Eigenvectors: uy,...,u,, Eigenvectors: p1,...,Pm
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2
|w,,, Z| ki
L p(lei <) 5 1o (5)

[c] Loukas, Andreas. "How close are the eigenvectors of the sample and actual covariance matrices?." International Conference on Machine Learning. PMLR, 2017.
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2
|w,,, Ail 1 ks
1. IP( X <t|>1 o
Eigenvectors with close eigenvalues are more likely to be confused

2
2. IP)(|111 pJ| < t) >1—-= (%) =P  Wwith each other for small changes (addition or removal of samples)
| il in the dataset

[c] Loukas, Andreas. "How close are the eigenvectors of the sample and actual covariance matrices?." International Conference on Machine Learning. PMLR, 2017.



Stability of coVariance filters and VNN

Theorem 1 (Stability of coVariance filters)

Consider a random vector X € R™*!  such that, its corresponding covariance
matrix is given by C = E[(X — E[X])(X — E[X])"]. For a sample covariance matrix
C,, formed using n i.i.d instances of X and a random instance x of X, such that,
|x|| < 1 under appropriate assumptions, the following holds with probability at least
1 —n"2 —2xkm/n for any € € (0,1/2]:

M Cl|lvIogmn
H(E,) —HO) = 3 -0 (vin+ [T
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Theorem 1 (Stability of coVariance filters)

Consider a random vector X € R™*!  such that, its corresponding covariance
matrix is given by C = E[(X — E[X])(X — E[X])"]. For a sample covariance matrix
C,, formed using n i.i.d instances of X and a random instance x of X, such that,

|x|| < 1 under appropriate assumptions, the following holds with probability at least
1 —n"2 —2xkm/n for any € € (0,1/2]:

IH(C,) = H(C)|| = -2 .o<\%+ HCH\/@) |

nz_¢ kminn

Theorem 2 (Stability of coVariance neural networks)

Consider a sample covariance matrix C,, and the ensemble covariance matrix C.
Given a bank of coVariance filters {chg}, such that \hgcg()\)\ < 1 and a pointwise
non-linearity o(-), such that, |o(a) — o(b)| < |a — b|, if the covariance filters satisfy

IH%,(Cn) = H5, (O]l < an
for some «,, > 0, then, we have

|®(x;Cp, H) — ®(x;C), H)|| < LF* oy, .



Stability of VNN: An Example

* Regression with PCA * Regression with VNN
PCA _
Data x ==p{ Transform Regression Output
y = Ux model

U: Principal components from C,,
(C,,: sample covariance matrix from n samples)




Stability of VNN: An Example

* Regression with PCA * Regression with VNN
VNN
PCA : Architecture
Data X w==p{ Transform Regre;alon Output Data x ==p =P Output ®(x;C,,H)
modae
y = Ux

U: Principal components from C,,
(C,,: sample covariance matrix from n samples)




Stability of VNN: An Example

* Regression with PCA

Data x Transform Regression Output
y = Ux model

U: Principal components from C,,
(C,,: sample covariance matrix from n samples)

Regression with VNN

Data x =

Add k samples to dataset

Data x —>-—> Reirsjiilo” Output

V: Principal components from C,,

Outputs are prone to instability: ||Cpir — Cu|| < ||V = U]

VNN
Architecture

—p Output ®(x;C,,, H)



Stability of VNN: An Example

* Regression with PCA

PCA
Data x == Transform Regression Output
y = Ux model

U: Principal components from C,,
(C,,: sample covariance matrix from n samples)

* Regression with VNN

VNN
Architecture

Data x =

Add k samples to dataset

Data x —>-_> Reirsjiilo” Output

V: Principal components from C,,

Outputs are prone to instability: ||Cpir — Cu|| < ||V = U]

VNN
Architecture

H

t

Cn—l—k

—p Output ®(x;C,,, H)

m—pp Output ®(x;C, 41, H)

| Provably stable: [|®(x; C; H) — (x; Cp 45 H) | = O




Stability of VNN: Experiments

* Comparison against PCA-regression cortical thickness dataset (m = 104) from (n = 341) human subjects

Objective: Regression of cortical thickness against chronological age (307/34 training/test split)

Metrics: MAE (mean absolute error), correlation between predicted age and true age
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Transferability of VNN

* Parameters to be learnt (filter taps) are independent of covariance matrix dimension
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* Parameters to be learnt (filter taps) are independent of covariance matrix dimension

®(x; Cp, h)

K—1
—> z= thCﬁx > a[z}
k=0

Perceptron

* Transferability of learnt parameters to datasets/ covariance matrix of different dimension

VNN
Architecture

=P Output ®(x;C,, ,H)

covariance matrix C,,,



Transferability of VNN

* Parameters to be learnt (filter taps) are independent of covariance matrix dimension

®(x; Cp, h)

K—1

X z

x| Beosne = o[z
k=0

Perceptron

* Transferability of learnt parameters to datasets/ covariance matrix of different dimension

VNN
Architecture

VNN
Architecture

=P Qutput ®(x;C,,,,H) Data y —p
y c Rm2X1 H

t

covariance matrix C,,, covariance matrix D,,,

m—pp Qutput ®(y;D,,,, H)




Transferability of VNN: Experiments

* Multi-resolution cortical thickness datasets for 170 human subjects
- FTDC100 (dimension = 100)
- FTDC300 (dimension = 300)
- FTDC500 (dimension = 500)

Objective: Regression of cortical thickness against chronological age



Transferability of VNN: Experiments

* Multi-resolution cortical thickness datasets for 170 human subjects
- FTDC100 (dimension = 100)
- FTDC300 (dimension = 300)
- FTDC500 (dimension = 500)

Objective: Regression of cortical thickness against chronological age

MAE
Jest

Train
FTDC100 FTDC300 FTDC500

FTDC100 - 5.38 +0.044 | 5.47 +0.047

FTDC300 | 5.33+028 - 5.57+0.32

FTDC500 | 5.35+005 | 5.38+0.04 -
MAE: mean absolute error



Conclusions

e Study of VNNs as GNN operating on covariance matrices as graphs
e VNNs are stable to perturbations in datasets, implying reproducibility

e Transferability of VNNs shown empirically



