Collective behavior of individual agents interacting and evolving with a large population

e.g., population modeling, opinion dynamics, etc

Collective behavior of *individual agents interacting* and evolving with a *large population*

Collective behavior of *individual agents* interacting and *evolving* with a *large population*

Fokker-Planck (FP) PDE

Deep Generalized Schrödinger Bridge Ш

Diffusion models in solving **Mean-Field Games**

with distributional boundary constraints

$$egin{aligned} &-rac{\partial u(x,t)}{\partial t} =
abla u^ op f(x,
ho) - rac{1}{2} \|\sigma
abla u\|^2 + rac{1}{2} \sigma^2 \Delta u + F(x,
ho) \ &rac{\partial
ho(x,t)}{\partial t} =
abla \cdot ig(
ho ig(\sigma^2
abla u - f(x,
ho) ig) ig) + rac{1}{2} \sigma^2 \Delta
ho \ & ext{ subject to }
ho(x,0) =
ho_0, \quad
ho(x,T) =
ho_T \ & extbf{I} \ & ext{ } dX_t = ig[f(X_t,
ho(X_t,t)) - \sigma^2
abla u(X_t,t) ig] dt + \sigma dW_t \end{aligned}$$

Deep Generalized Schrödinger Bridge

Deep Generalized Schrödinger Bridge II Schrödinger Bridge in solving Mean-Field Games

with distributional boundary constraints

Necessary and sufficient conditions (proven in paper)

Training objective = log-likelihood + Temporal Difference loss

Chen* & Liu* et al., "Likelihood training of SB", ICLR 2022

generalized to mean-field structure

Crowd Navigation Mean-Field Game

Guan-Horng Liu

Deep Generalized Schrödinger Bridge

Opinion Depolarization Mean-Field Game

Guan-	Н	lor	ng	: 1	iu
Guun			פי י	, -	ľ