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Severe Threats from Black-box Attacks

▶ Transfer attacks: using xadv from MS to attack MT

– The attackers can utilize same dataset to train the surrogate model MS

– Generating xadv (white-box attacks) on MS , then attacking MT .

– Don’t need to iteratively query but it is not practical and performs poor attack performance.



Transfer attacks overfits to MS

▶ Taking the target attack as example, the general formulation of many existing transfer

attack methods can be written as follows:

min
xadv∈Bϵ(x)

L(Ms(xadv;θ), yt). (1)

where L is the adversarial loss function, yt is target label.

▶ The existing transfer attack methods exhibit poor transferability on MT (not successfully

attacking MT )

▶ xadv severely depends on (overfits to) the decision boundaries of MS and there are huge

difference of decision boundaries between MS and MT . [1,2,3]

[1] Tramer et al., Ensemble Adversarial Training: Attacks and Defenses, ICLR 2018.

[2] Demontis et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, ACM CCS

2019.

[3] Dong et al., Boosting adversarial attacks with momentum, CVPR 2018.



New Perspective to Interpret Adversarial Transferability

▶ We propose a new perspective to interpret the adversarial transferability, the flatness of

(adversarial) loss landscape of xadv on MS .

▶ The xadv located at the flat local minimum is less sensitive to the changes of decision

boundary (the difference of MS and MT ). Therefore, it could have the better adversarial

transferability.

(a) (b)
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Finding xadv located at a local flat region

▶ We encourage that not only xadv itself has low loss value, but also the points in the

vicinity of xadv have similarly low loss values.

▶ We propose to minimize the maximal loss value within a local neighborhood region

around xadv.

▶ The maximal loss is implemented by perturbing xadv (adding perturbation nadv) to

maximize the adversarial loss, named Reverse Adversarial Perturbation (RAP). So, we

aim to solve this problem,

min
xadv∈Bϵ(x)

L
(
MS

(
xadv + nadv;θ

)
, yt

)
Where,

nadv = argmax
∥n∥∞≤ϵn

L
(
MS

(
xadv + n;θ

)
, yt

)



RAP with Late-Start

▶ In our preliminary experiments, we find that RAP requires more iterations to converge and

the performance is slightly lower during the initial iterations.

▶ Hence, we further propose a better initialization, late-start (LS in following content) which

first only runs the outer loop for several iterations then conducts the min-max loop.
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A Closer Look at RAP

▶ First we visualize the loss landscape around xadv on MS by plotting the loss variations.

We can observe that RAP could help find xadv located at the flat region.



RAP achieves the better attack performance

▶ Combined with existing attacks, RAP further boosts their transferability for both

untargeted and targeted attacks.

The below tables show the transfer targeted attack performance (MS =⇒ MT ).

Attack
ResNet-50 =⇒ DenseNet-121=⇒

Dense-121 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

MTDI / +RAP / +RAP-LS 74.9 / 78.2 / 88.5 62.8 / 72.9 / 81.5 10.9 / 28.3 / 33.2 44.9 / 64.3 / 74.5 38.5 / 55.0 / 65.5 7.7 / 23.0 / 26.5

MTDSI / +RAP / +RAP-LS 86.3 / 88.4 / 93.3 70.1 / 77.7 / 84.7 38.1 / 51.8 / 58.0 55.0 / 71.2 / 75.8 42.0 / 58.4 / 62.3 19.8 / 39.0 / 39.2

MTDAI / +RAP / +RAP-LS 91.4 / 89.4 / 93.6 79.9 / 79.0 / 86.3 50.8 / 57.1 / 64.1 69.1 / 74.2 / 82.1 54.7 / 63.1 / 69.3 32.0 / 43.5 / 49.3

Attack
VGG-16 =⇒ Inc-v3=⇒

Res-50 Dense-121 Inc-v3 Res-50 Dense-121 VGG-16

MTDI / +RAP / +RAP-LS 11.8 / 16.7 / 22.9 13.7 / 19.4 / 27.4 0.7 / 3.4 / 4.6 1.8 / 8.3 / 7.5 4.1 / 14.8 / 13.4 2.9 / 8.0 / 9.8

MTDSI / +RAP / +RAP-LS 31.0 / 35.3 / 38.7 41.7 / 44.4 / 49.6 9.6 / 15.2 / 13.7 5.6 / 11.9 / 10.7 10.4 / 21.2 / 20.9 4.2 / 8.9 / 8.6

MTDAI / +RAP / +RAP-LS 36.2 / 39.0 / 43.1 48.0 / 45.1 / 55.2 11.6 / 17.1 / 17.6 9.6 / 13.6 / 16.7 17.9 / 27.5 / 31.6 8.4 / 12.0 / 12.1



RAP achieves the better attack performance on diverse architectures

▶ We also conduct experiments on diverse network architectures, ViT and ensemble models.

Our RAP-LS achieves the better attack performance.

Attack
Untarged Targeted Untarged Targeted

IncRes-v2 NASNet-L ViT-B/16 IncRes-v2 NASNet-L ViT-B/16 Inc-v3adv IncRes-v2ens Inc-v3adv IncRes-v2ens

MTDI 83.4 89.0 27.9 14.8 32.1 0.4 68.1 50.9 0.8 0.0

MTDI+RAP-LS 95.6 97.5 42.7 43.0 62.5 1.7 86.5 72.3 9.7 4.1

MTDSI 95.7 98.0 43.0 45.5 67.9 2.6 90.0 79.6 12.7 6.7

MTDSI+RAP-LS 98.6 99.7 57.4 64.0 80.4 5.3 96.5 91.5 31.0 22.0

MTDAI 97.3 98.8 45.5 58.4 75.3 3.3 92.1 82.7 17.2 12.2

MTDAI+RAP-LS 99.2 99.8 60.2 70.4 82.6 7.4 96.7 91.6 34.4 26.0



RAP achieves the SOTA attack performance stronger defense models

▶ We also take a comparison on stronger defense models. Our methods also chieve the SOTA

performance on defense models. Our RAP-LS achieves the better attack performance.

Attack
Untarged

Res-50 AT (ℓ2) Res-50 AT (ℓ∞) Feature Denoising

MTDI 42.5 32.4 44.1

MTDI+RAP-LS 59.5 34.4 44.4

MTDSI 56.6 35.8 45.0

MTDSI+RAP-LS 70.3 36.6 45.7

MTDAI 62.1 35.6 44.2

MTDAI+RAP-LS 73.7 37.7 45.2



Thank Y’all!
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