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Introduction



Severe Threats from Black-box Attacks

» Transfer attacks: using % from M?° to attack M7T

— The attackers can utilize same dataset to train the surrogate model M°
— Generating % (white-box attacks) on M?®, then attacking M7

— Don't need to iteratively query but it is not practical and performs poor attack performance.
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Transfer attacks overfits to M*°

» Taking the target attack as example, the general formulation of many existing transfer
attack methods can be written as follows:
min  L(M®(xz?%;0),y,). (1)
zedveB, (z)
where L is the adversarial loss function, y; is target label.
> The existing transfer attack methods exhibit poor transferability on M? (not successfully
attacking MT)

» 299% severely depends on (overfits to) the decision boundaries of M and there are huge
difference of decision boundaries between M* and M7T. [1,2,3]

[1] Tramer et al., Ensemble Adversarial Training: Attacks and Defenses, ICLR 2018.

[2] Demontis et al., Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, ACM CCS
2019.

[3] Dong et al., Boosting adversarial attacks with momentum, CVPR 2018.



New Perspective to Interpret Adversarial Transferability

» We propose a new perspective to interpret the adversarial transferability, the flatness of
(adversarial) loss landscape of %% on M?.

» The 2% located at the flat local minimum is less sensitive to the changes of decision

boundary (the difference of M* and MT). Therefore, it could have the better adversarial
transferability.
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Reverse Adversarial Perturbation



Finding °? located at a local flat region

» We encourage that not only %% itself has low loss value, but also the points in the
vicinity of % have similarly low loss values.

» We propose to minimize the maximal loss value within a local neighborhood region
around .

» The maximal loss is implemented by perturbing x??" (adding perturbation n%?") to
maximize the adversarial loss, named Reverse Adversarial Perturbation (RAP). So, we
aim to solve this problem,

wa,d?élgne(m) r (MS (xad'u + podt ; 9) ’yt)
Where,
n® = argmax . (./\/IS (w“d“ +n; 0) 7yt)
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RAP with Late-Start

» In our preliminary experiments, we find that RAP requires more iterations to converge and

the performance is slightly lower during the initial iterations.

> Hence, we further propose a better initialization, late-start (LS in following content) which
first only runs the outer loop for several iterations then conducts the min-max loop.
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Experimental Evaluation



> First we visualize the loss landscape around %% on M* by plotting the loss variations.
We can observe that RAP could help find 2% located at the flat region.
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A Closer Look at RAP
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RAP achieves the better attack performance

» Combined with existing attacks, RAP further boosts their transferability for both
untargeted and targeted attacks.
The below tables show the transfer targeted attack performance (M*® = MT).

Attack

Dense-121

ResNet-50 —
VGG-16

Inc-v3

Res-50

DenseNet-121—>
VGG-16

Inc-v3

MTDI / +RAP / +RAP-LS
MTDSI / +RAP / +RAP-LS
MTDAI / +RAP / +RAP-LS

749 /782 / 885
86.3 / 88.4 / 93.3
914 /89.4 / 93.6

62.8 / 72.9 / 81.5
701/ 71.7 / 84.7
79.9 / 79.0 / 86.3

109 /283 / 33.2
38.1 /518 /58.0
50.8 / 57.1 / 64.1

449/ 64.3 / 74.5
55.0 /71.2 / 75.8
69.1/74.2 / 82.1

38.5 / 55.0 / 65.5
420 /584 /62.3
547 / 631/ 69.3

7.7/23.0/265
19.8 / 39.0 / 39.2
32,0 / 435/ 49.3

Attack VGG-16 — Inc-v3—>
ac Res-50 Dense-121 Incv3 Res-50 Dense-121 VGG-16
MTDI / +RAP / +RAP-LS | 11.8/16.7 /229 13.7/194/27.4 07 /34 /4.6 18/83/75 41/148/134 29/80/98
MTDSI / +RAP / +RAP-LS | 31.0 /35.3 / 38.7 41.7/444/49.6 96/152/137 | 56/11.9 /107 104/21.2/209 42/8.9/86

MTDAI / +RAP / +RAP-LS

36.2 /39.0 / 43.1

48.0 / 45.1 / 55.2

11.6 / 17.1 / 17.6

9.6 /13.6 / 16.7

17.9 / 27.5 / 31.6

8.4 /120 /121




RAP achieves the better attack performance on diverse architectures

» We also conduct experiments on diverse network architectures, ViT and ensemble models.
Our RAP-LS achieves the better attack performance.

Attack Untarged Targeted Untarged Targeted
IncRes-v2  NASNet-L  ViT-B/16 | IncRes-v2 NASNet-L  ViT-B/16 | Inc-v3aay  IncRes-v2e,s | Inc-v3aay  IncRes-v2ens
MTDI 83.4 89.0 27.9 14.8 32.1 0.4 68.1 50.9 0.8 0.0
MTDI4RAP-LS 95.6 97.5 42.7 43.0 62.5 1.7 86.5 723 9.7 4.1
MTDSI 95.7 98.0 43.0 455 67.9 2.6 90.0 79.6 12.7 6.7
MTDSI4+-RAP-LS 98.6 99.7 57.4 64.0 80.4 5.3 96.5 91.5 31.0 22.0
MTDAI 97.3 98.8 455 58.4 75.3 33 92.1 82.7 17.2 12.2

MTDAI+RAP-LS 99.2 99.8 60.2 70.4 82.6 7.4 96.7 91.6 34.4 26.0




RAP achieves the SOTA attack performance stronger defense models

» We also take a comparison on stronger defense models. Our methods also chieve the SOTA

performance on defense models. Our RAP-LS achieves the better attack performance.

Attack Untarged
Res-50 AT (¢2) Res-50 AT ({) Feature Denoising

MTDI 42.5 32.4 44.1
MTDI4+RAP-LS 59.5 34.4 44.4

MTDSI 56.6 35.8 45.0
MTDSI+RAP-LS 70.3 36.6 45.7

MTDAI 62.1 35.6 44.2
MTDAI+RAP-LS 73.7 37.7 45.2




Thank Y’all!
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