Invertible Monotone Operators for Normalizing Flows

NeurIPS 2022

Byeongkeun Ahn, Chiyoon Kim, Youngjoon Hong, Hyunwoo J. Kim

Normalizing Flows (NFs)

 $\log p_X(x) = \log p_Z(z) + \log \det J_F$ * $J_F = \partial z / \partial x$ is the Jacobian of F at point x

Normalizing Flows (NFs)

 $\log p_X(x) = \log p_Z(z) + \log \det J_F$ * $J_F = \partial z / \partial x$ is the Jacobian of F at point x

* Images were adopted from Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

* Images were adopted from Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

* Images were adopted from Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

A Crucial Observation

A Crucial Observation

A Crucial Observation

Monotone Functions in \mathbb{R}^n

• In \mathbb{R} , a function $F: \mathbb{R} \to \mathbb{R}$ is monotone $\Leftrightarrow x < y$ implies $F(x) \le F(y)$ $\Leftrightarrow (F(x) - F(y))(x - y) \ge 0$ for all $x, y \in \mathbb{R}$

• In \mathbb{R}^n , a function $F: \mathbb{R}^n \to \mathbb{R}^n$ is monotone $\Leftrightarrow \langle F(x) - F(y), x - y \rangle \ge 0$ for all $x, y \in \mathbb{R}^n$

* $\langle \cdot, \cdot \rangle$ denotes a dot product

The Geometric Construction

The Geometric Construction

The Geometric Construction

• For an *L*-Lipschitz function *G* (*L* < 1), the monotone formulation is defined as

$$F(x) = \left(\frac{\mathrm{Id} + G}{2}\right)^{-1} (x) - x$$

• The inverse resembles very much the forward computation:

$$F^{-1}(y) = \left(\frac{\mathrm{Id} - G}{2}\right)^{-1}(y) - y$$

Training Algorithm

Training objective: maximum likelihood

• Backpropagation through the inverse of (Id + G): *

$$w = (\mathrm{Id} + G)^{-1}(u) \qquad \frac{\partial \ell}{\partial u} = \frac{\partial \ell}{\partial w}(I + J_G)^{-1}, \quad \frac{\partial \ell}{\partial \theta} = \left(\frac{\partial \ell}{\partial w}(I + J_G)^{-1}\right)\frac{\partial G}{\partial \theta}$$

Log-determinant computation: **

$$\log \det J_F = \operatorname{tr}[\log(I - J_G) - \log(I + J_G)] = \mathbb{E}_{n \sim p_N(n), v \sim \mathcal{N}(0, I)} \left[\sum_{k=1}^n \frac{(-1) - (-1)^{k+1}}{k} \frac{v^T J_G^k v}{P(N \ge k)} \right]$$

where J_G is evaluated at $w = \left(\frac{\mathrm{Id}+G}{2}\right)^{-1}(x)$.

* Adapted from Lu et al., Implicit Normalizing Flows, ICLR 2021.

** Adapted from Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

Concatenated Pila

$$\operatorname{Pila}(x) = \begin{cases} x & \text{if } x \ge 0, \\ \left(\frac{k^2}{2}x^3 - kx^2 + x\right)e^{kx} & \text{if } x < 0. \end{cases} \qquad k = 5$$

$$\operatorname{CPila}(x) = \alpha_1 [\operatorname{Pila}(x - \alpha_2), \operatorname{Pila}(-x - \alpha_2)]^T$$
 where $\alpha_1 = 1/1.06$ and $\alpha_2 = 0.2$.

Figure 2: Graphical illustrations of Pila and CPila. (a) The graph of Pila (red) and its first (green) and second derivatives (blue) with k = 5. (b) The speed of the curve of CPila (red) with k = 5 and CLipSwish (green) with $\beta = 1$.

• Monotone Flows have a strictly better expressive power!

Definition 3. For $0 \le L < 1$,

 $\begin{array}{ll} L\text{-Lipschitz functions} & \mathcal{G}_L = \left\{ G \in C^2(\mathbb{R}^n, \mathbb{R}^n) | \text{Lip}(G) = L \right\} \\ \text{Residual formulation}^* & \mathcal{R}_L = \left\{ \text{Id} + G | G \in \mathcal{G}_L \right\} \\ \text{Inverse residual formulation}^{**} & \mathcal{I}_L = \left\{ (\text{Id} + G)^{-1} | G \in \mathcal{G}_L \right\} \\ \text{Monotone formulation} & \mathcal{M}_L = \left\{ \left(\frac{\text{Id} + G}{2} \right)^{-1} - \text{Id} | G \in \mathcal{G}_L \right\} \end{array}$

* Behrmann et al., Invertible Residual Networks, ICML 2019.

Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

• Monotone Flows have a strictly better expressive power!

Definition 3. For $0 \le L < 1$,

 $\begin{array}{ll} L\text{-Lipschitz functions} & \mathcal{G}_L = \left\{ G \in C^2(\mathbb{R}^n, \mathbb{R}^n) | \text{Lip}(G) = L \right\} \\ \text{Residual formulation}^* & \mathcal{R}_L = \left\{ \text{Id} + G | G \in \mathcal{G}_L \right\} \\ \text{Inverse residual formulation}^{**} & \mathcal{I}_L = \left\{ (\text{Id} + G)^{-1} | G \in \mathcal{G}_L \right\} \\ \text{Monotone formulation} & \mathcal{M}_L = \left\{ \left(\frac{\text{Id} + G}{2} \right)^{-1} - \text{Id} | G \in \mathcal{G}_L \right\} \end{array}$

Theorem 4. *For* $0 \le L < 1$,

(i)
$$\mathcal{I}_L = \frac{1}{1 - L^2} \mathcal{R}_L$$
, (ii) $\mathcal{M}_L = \frac{1 + L^2}{1 - L^2} \mathcal{R}_{\frac{2L}{1 + L^2}}$, (iii) $\mathcal{R}_L \subsetneq \mathcal{M}_L$, (iv) $\mathcal{I}_L \subsetneq \mathcal{M}_L$.

* Behrmann et al., Invertible Residual Networks, ICML 2019.

Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

• Monotone Flows have a strictly better expressive power!

Definition 3. For $0 \le L < 1$,

 $\begin{array}{ll} L\text{-Lipschitz functions} & \mathcal{G}_L = \left\{ G \in C^2(\mathbb{R}^n, \mathbb{R}^n) | \text{Lip}(G) = L \right\} \\ \text{Residual formulation}^* & \mathcal{R}_L = \left\{ \text{Id} + G | G \in \mathcal{G}_L \right\} \\ \text{Inverse residual formulation}^{**} & \mathcal{I}_L = \left\{ (\text{Id} + G)^{-1} | G \in \mathcal{G}_L \right\} \\ \text{Monotone formulation} & \mathcal{M}_L = \left\{ \left(\frac{\text{Id} + G}{2} \right)^{-1} - \text{Id} | G \in \mathcal{G}_L \right\} \end{array}$

Theorem 4. *For* $0 \le L < 1$,

(i)
$$\mathcal{I}_L = \frac{1}{1 - L^2} \mathcal{R}_L$$
, (ii) $\mathcal{M}_L = \frac{1 + L^2}{1 - L^2} \mathcal{R}_{\frac{2L}{1 + L^2}}$, (iii) $\mathcal{R}_L \subsetneq \mathcal{M}_L$, (iv) $\mathcal{I}_L \subsetneq \mathcal{M}_L$.

* Behrmann et al., Invertible Residual Networks, ICML 2019.

Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

• Monotone Flows have a strictly better expressive power!

Definition 3. For $0 \le L < 1$,

 $\begin{array}{ll} L\text{-Lipschitz functions} & \mathcal{G}_L = \left\{ G \in C^2(\mathbb{R}^n, \mathbb{R}^n) | \text{Lip}(G) = L \right\} \\ \text{Residual formulation}^* & \mathcal{R}_L = \left\{ \text{Id} + G | G \in \mathcal{G}_L \right\} \\ \text{Inverse residual formulation}^{**} & \mathcal{I}_L = \left\{ (\text{Id} + G)^{-1} | G \in \mathcal{G}_L \right\} \\ \text{Monotone formulation} & \mathcal{M}_L = \left\{ \left(\frac{\text{Id} + G}{2} \right)^{-1} - \text{Id} | G \in \mathcal{G}_L \right\} \end{array}$

Theorem 4. *For* $0 \le L < 1$,

(i)
$$\mathcal{I}_L = \frac{1}{1 - L^2} \mathcal{R}_L$$
, (ii) $\mathcal{M}_L = \frac{1 + L^2}{1 - L^2} \mathcal{R}_{\frac{2L}{1 + L^2}}$, (iii) $\mathcal{R}_L \subsetneq \mathcal{M}_L$, (iv) $\mathcal{I}_L \subsetneq \mathcal{M}_L$.

* Behrmann et al., Invertible Residual Networks, ICML 2019.

Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

• Monotone Flows have a strictly better expressive power!

* Behrmann et al., Invertible Residual Networks, ICML 2019.

Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

Experimental Results

• 1-D fitting experiment

Figure 4: Comparison of $\mathcal{R}_L \circ \mathcal{R}_L$, $\mathbb{R}^+ \mathcal{R}_L \circ \mathbb{R}^+ \mathcal{R}_L$, $\mathbb{R}^+ \mathcal{I}_L \circ \mathbb{R}^+ \mathcal{R}_L$, and $\mathbb{R}^+ \mathcal{M}_L \circ \mathbb{R}^+ \mathcal{M}_L$. All experiments except (a) are performed with learnable scaling (multiplying by \mathbb{R}^+). Blue and red lines represent the target function and the approximation by neural networks, respectively.

Experimental Results

• 2-D toy density modelling experiments

Figure 5: 2D toy density modeling results (full results in Appendix D).

Table 1: Toy density modelling results in nats. We display the average of the test loss for the last 20 tests at checkpoints (iterations 48100, 48200, ..., 50000) for a single run.

Data	i-DenseNet	Monotone Flow
2 Spirals	2.729	2.658
8 Gaussians	2.840	2.840
Checkerboard	3.609	3.540
Circles	3.280	3.276
Moons	2.401	2.400
Pinwheel	2.343	2.333
Rings	2.884	2.665
Swissroll	2.680	2.676

Experimental Results

• Image density modelling experiments

Table 2: Density estimation results on images in bits-per-dimension (bpd) with the number of parameters of each model. All numbers except for the last row are with uniform dequantization. VDQ: variational dequantization.

	MNIST		CIFAR-10		ImageNet32		ImageNet64	
Model	bpd \downarrow	params						
Real NVP [3]	1.06	-	3.49	6.4M	4.28	46.0M	3.98	96.0M
Glow [4]	1.05	-	3.35	44.2M	4.09	66.1M	3.81	111.1M
FFJORD [36]	0.99	-	3.40	-	-	-	-	-
i-ResNet [5]	1.06	-	3.45	44.2M	-	-	-	-
Residual Flow [6]	0.97	16.6M	3.28	25.2M	4.01	47.1M	3.76	53.3M
i-DenseNet [7]	-	-	3.25	24.9M	3.98	47.0M	-	-
Monotone Flow	0.928	20.9M	3.215	24.9M	3.961	47.0M	3.734	48.9M
Monotone Flow + VDQ	-	-	3.062	46.9M	3.901	69.0M	-	-

(a) CIFAR-10 train data.

(c) ImageNet32 train data.

(b) Monotone Flows trained on CIFAR-10.

(d) Monotone Flows trained on ImageNet32.

Figure 6: Train data and generated samples of CIFAR-10 and ImageNet32.

Summary

- A normalizing flow based on monotone operators architecturally flexible while bypassing the Lipschitz constraint.
- A new activation function Concatenated Pila to improve gradient flow.
- Theoretical analysis shows monotone formulation is strictly more expressive than baselines. *, **
- On experiments, Monotone Flows consistently outperform comparable baselines on toy datasets and multiple image density estimation benchmarks.

Chen et al., Residual Flows for Invertible Generative Modeling, NeurIPS 2019.

^{*} Behrmann et al., Invertible Residual Networks, ICML 2019.

^{**} Lu et al., Implicit Normalizing Flows, ICLR 2021.

Thanks for listening!