Convergence beyond the over-parameterized regime using Rayleigh quotients

David A. R. Robin Kevin Scaman Marc Lelarge

Affiliation

INRIA - École Normale Supérieure de Paris PSL Research University

Paper link

https://neurips.cc/virtual/2022/poster/54755

うして ふゆ く は く は く む く し く

Context: Machine Learning, parametric regime

Input set \mathcal{X} , output set $\mathcal{Y} \subseteq \mathbb{R}^d$ for some $d \in \mathbb{N}$. Dataset $\mathcal{D} \subseteq \mathcal{X} \times \mathcal{Y}$, functional loss $\ell : \mathcal{Y}^{\mathcal{X}} \to \mathbb{R}_+$

Least squares $(\mathcal{Y} = \mathbb{R}^k)$: $\ell : f \mapsto \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\|f(x) - y\|_2^2 \right]$ Cross entropy $(\mathcal{Y} = \mathbb{R}^k_+)$: $\ell : f \mapsto \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[-\sum_i y_i \log(f_i(x)) \right]$

Task: find $f : \mathcal{X} \to \mathcal{Y}$ such that $\ell(f) = 0$.

The Deep Learning tactic:

- Choose $\Theta = \mathbb{R}^m$ a parameter space,
- Parameterize with $F: \Theta \to \mathcal{Y}^{\mathcal{X}}$ to go with $\ell: \mathcal{Y}^{\mathcal{X}} \to \mathbb{R}_+$
- ▶ Do gradient flow on $\mathcal{L} : \Theta \to \mathbb{R}_+$, with $\mathcal{L} = \ell \circ F$

Previously in convergence theory: infinite-width NTK

Simplification: finite dataset $\mathcal{X} = [n], \mathcal{Y} = \mathbb{R}, \ell(f) = ||f - f^*||_2^2$. Parameterization $F : \Theta \to \mathcal{Y}^{\mathcal{X}}$ becomes $F : \mathbb{R}^m \to \mathbb{R}^n$. Derivative at $\theta \in \mathbb{R}^m$ is a matrix $DF(\theta) \in \mathbb{R}^{n \times m}$.

Neural Tangent Kernel: $K_{\theta} = DF(\theta) DF(\theta)^T \in \mathbb{R}^{n \times n}$. **Prop**: If $\exists \mu \in \mathbb{R}^*_+, \forall t \in \mathbb{R}_+, K_{\theta_t} \succeq \mu$, then $\mathcal{L}(\theta_t) \xrightarrow[t \to +\infty]{} 0$

Proof: By flow def, $-\partial_t \mathcal{L}(\theta) = -\nabla \mathcal{L}_{\theta} \cdot \partial_t \theta = \nabla \mathcal{L}_{\theta} \cdot \nabla \mathcal{L}_{\theta}$ By chain rule on $\mathcal{L} = \ell \circ F$, $\nabla \mathcal{L}_{\theta} = 2 \cdot DF(\theta)^T (f_{\theta} - f^*)$, thus

$$-\partial_t \mathcal{L}(\theta) = 4(f_\theta - f^*)^T K_\theta (f_\theta - f^*) \ge 4\mu \|f_\theta - f^*\|_2^2$$

Therefore $-\partial_t \mathcal{L}(\theta) \ge \kappa \mathcal{L}(\theta)$, thus $\mathcal{L}(\theta_t) \le \mathcal{L}(\theta_0) e^{-\kappa t}$.

That's a Polyak-Łojasiewicz inequality, our proofs are similar.

Kurdyka's desingularizer for Łojasiewicz inequalities

Let $\mathcal{U} \subseteq \Theta$ be a region such that $\mathcal{L} : \Theta \to \mathbb{R}_+$ satisfies the Kurdyka-Łojasiewicz inequality with desingularizer $\varphi : \mathbb{R}_+ \to \mathbb{R}$.

$$\forall \theta \in \mathcal{U}, \quad \mathrm{d}\varphi_{\mathcal{L}(\theta)} \left(\nabla \mathcal{L}_{\theta} \cdot \nabla \mathcal{L}_{\theta} \right) \geq \mu$$

If $\theta : \mathbb{R}_+ \to \mathcal{U}$ is a gradient flow of \mathcal{L} , then

$$\forall t \in \mathbb{R}_+, \quad \mathcal{L}(\theta_t) \le \varphi^{-1} \left(\varphi(\mathcal{L}(\theta_0)) - \mu t \right)$$

Ex: $\|\nabla \mathcal{L}\|_2^2 \ge \mathcal{L}$ for $\varphi = \log$, or $\|\nabla \mathcal{L}\|_2^2 \ge \mathcal{L}^2$ for $\varphi(u) = -1/u$ Proof by chain rule.

$$-\partial_t(\varphi \circ \mathcal{L}) = -\mathrm{d}(\varphi \circ \mathcal{L})_\theta \,\partial_t \theta = \mathrm{d}\varphi_{\mathcal{L}(\theta)} \nabla \mathcal{L}_\theta \cdot \nabla \mathcal{L}_\theta \ge \mu$$

Then integrate on the interval I = [0, t]. \Box $\varphi : \mathbb{R}_+ \to \mathbb{R}$ pulls back the affine bound $(I \to \mathbb{R})$ into $(I \to \mathbb{R}_+)$

The problem with definite-NTK assumptions

Recall: with m parameters and n samples, $DF(\theta) \in \mathbb{R}^{n \times m}$

$$K_{\theta} = DF(\theta) DF(\theta)^T \in \mathbb{R}^{n \times n}$$
 has rank $\leq m$

Definite-NTK implies overparameterization $(K_{\theta} \succeq \mu > 0) \Rightarrow (m \ge n)$

How do we go to the underparameterized regime? We can weaken assumption to a Rayleigh quotient bound

うして ふゆ く は く は く む く し く

Reminder: Rayleigh quotients of bilinear forms

Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be two normed vector spaces. Let $A: V \times W \to \mathbb{R}$ be a bilinear map.

The Rayleigh quotient of A in direction $(x, y) \in V \times W$ is

$$\mathcal{R}(A; x, y) = \frac{A(x, y)}{\|x\|_V \|y\|_W}$$

If $A: V \times V \to \mathbb{R}$ is a symmetric map, with eigendecomposition $(\lambda_i \in \mathbb{R}_+, v_i \in V)_{i \in [d]}$ orthonormal w.r.t inner product $\langle \cdot, \cdot \rangle$ on V

$$\mathcal{R}(A; x, x) = \frac{\sum_{i} \lambda_i \langle x, v_i \rangle^2}{\sum_{i} \langle x, v_i \rangle^2}$$

Convex combination of eigenvalues!

Rayleigh bounds are strictly weaker than positive-definiteness.

Kurdyka-Łojasiewicz inequalities by composition

Let $F: \Theta \to \mathcal{F}$ be a differentiable parameterization. Let $\mathcal{U} \subseteq \Theta$ be a set s.t. $\ell: \mathcal{F} \to \mathbb{R}_+$ satisfies KL w. $\varphi: \mathbb{R}_+ \to \mathbb{R}$

 $\forall f \in F(\mathcal{U}), \quad \mathrm{d}\varphi_{\ell(f)} \left(\nabla \ell_f \cdot \nabla \ell_f\right) \geq 1$

If the Rayleigh quotient of K_{θ} along $\nabla \ell$ is bounded below on \mathcal{U} ,

$$\exists \mu \in \mathbb{R}^*_+, \, \forall \theta \in \mathcal{U}, \quad \mathcal{R}\left(K_{\theta}; \nabla \ell_{F(\theta)}, \nabla \ell_{F(\theta)}\right) \geq \mu$$

Then $\mathcal{L} = (\ell \circ F) : \Theta \to \mathbb{R}_+$ satisfies the KL inequality

$$\forall \theta \in \mathcal{U}, \quad \mathrm{d}\varphi_{\mathcal{L}(\theta)} \left(\nabla \mathcal{L}_{\theta} \cdot \nabla \mathcal{L}_{\theta} \right) \geq \mu$$

Proof idea: chain rule $\nabla \mathcal{L}_{\theta} = DF(\theta)^T \nabla \ell_{F(\theta)}$ to make NTK K_{θ} appear as previously, then use the lower bound assumptions.

Result teaser: Linear-model logistic regression

Input $\mathcal{X} = \mathbb{R}^d$, with $c \in \mathbb{N}^*$ classes. $(\Delta_c = \{p \in \mathbb{R}^c_+ \mid \sum_i p_i = 1\})$ Logistic¹ regression with linear models: $F : \mathbb{R}^{c \times d} \to (\mathcal{X} \to \Delta_c),$ $F(\theta) : x \mapsto \operatorname{softargmax}(\theta \cdot x)$

Under multi-class cross-entropy

$$H: f \mapsto \mathbb{E}_x \left[\sum_{i \in [c]} -f^*(x)_i \log \left(f(x)_i \right) \right]$$

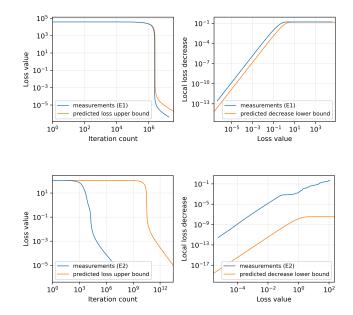
Gradient flows $\theta : \mathbb{R}_+ \to \Theta$ satisfy for all $t \in \mathbb{R}_+$

$$H\left(F(\theta_t)\right) \le \log\left(\frac{1}{W_0\left(\exp\left(\kappa^2\varepsilon^2t - C\right)\right)}\right)$$

With $\varepsilon \in \mathbb{R}^*_+$ a separation margin, $\kappa \in \mathbb{R}^*_+$ an isolation measure, $C \in \mathbb{R}^*_+$ and W_0 is the Lambert function $W_0(x) \exp(W_0(x)) = x$.

¹softargmax $(u)_i = e^{u_i} / \sum_j e^{u_j}$

Result teaser: Linear-model logistic regression



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Result teaser: Finite-width two-layer neural networks

Input $\mathcal{X} \subseteq \mathbb{R}^d$ compact, $\sigma : \mathbb{R} \to \mathbb{R}$ non-polynomial Lipschitz. Regression two-layer network: $F : \mathbb{R}^{m \times d} \times \mathbb{R}^m \to (\mathcal{X} \to \mathbb{R})$

$$F(w,a): x \mapsto \sum_{i \in [m]} a_i \, \sigma(w_i \cdot x)$$

Optimum $f^* : \mathcal{X} \to \mathbb{R}$ is continuous, loss is least-squares $\mathcal{L} : \theta \mapsto \mathbb{E}_{x \sim \mathcal{D}} \left[(F(\theta)(x) - f^*(x))^2 \right]$

Let $\varepsilon \in \mathbb{R}^*_+$ and $\delta \in]0, 1[$ There exists $m \in \mathbb{N}^*$ such that with probability $(1 - \delta)$ over initializations θ_0 , all flows $\theta : \mathbb{R}_+ \to \Theta$ with $\theta(0) = \theta_0$ satisfy

$$\mathcal{L}(\theta_t) \underset{t \to +\infty}{\longrightarrow} \eta < \varepsilon$$

Even if \mathcal{D} has infinite support: no over-parameterization here.

Takeaway: Kurdyka-Łojasiewicz + Rayleigh quotients

- Integration of Polyak-Łojasiewicz inequalities works great
 - But they imply linear convergence \rightarrow implausible for DL?
 - Patch: Replace with Kurdyka-Lojasiewicz inequalities

$$d\varphi_{\mathcal{L}(\theta)} \left(\nabla \mathcal{L}_{\theta} \cdot \nabla \mathcal{L}_{\theta} \right) \geq \mu$$

- ▶ Lojasiewicz inequalities (any kind) are very hard to obtain
 ▶ Idea: Proceed by composition (like definite-NTK case) (ℓ is KL, and F satisfies some property) → (ℓ ∘ F) is KL
- Definite-NTK requires overparameterization (m ≥ n)
 K_θ ∈ ℝ^{n×n} has rank ≤ m → overparam or rank deficiency
 Patch: Control one Rayleigh quotient, not all eigenvalues

▶ Bonus: Some tools to lower-bound Rayleigh quotients

Convergence beyond the over-parameterized regime using Rayleigh quotients

David A. R. Robin Kevin Scaman Marc Lelarge

Affiliation

INRIA - École Normale Supérieure de Paris PSL Research University

Paper link

https://neurips.cc/virtual/2022/poster/54755

うして ふゆ く は く は く む く し く