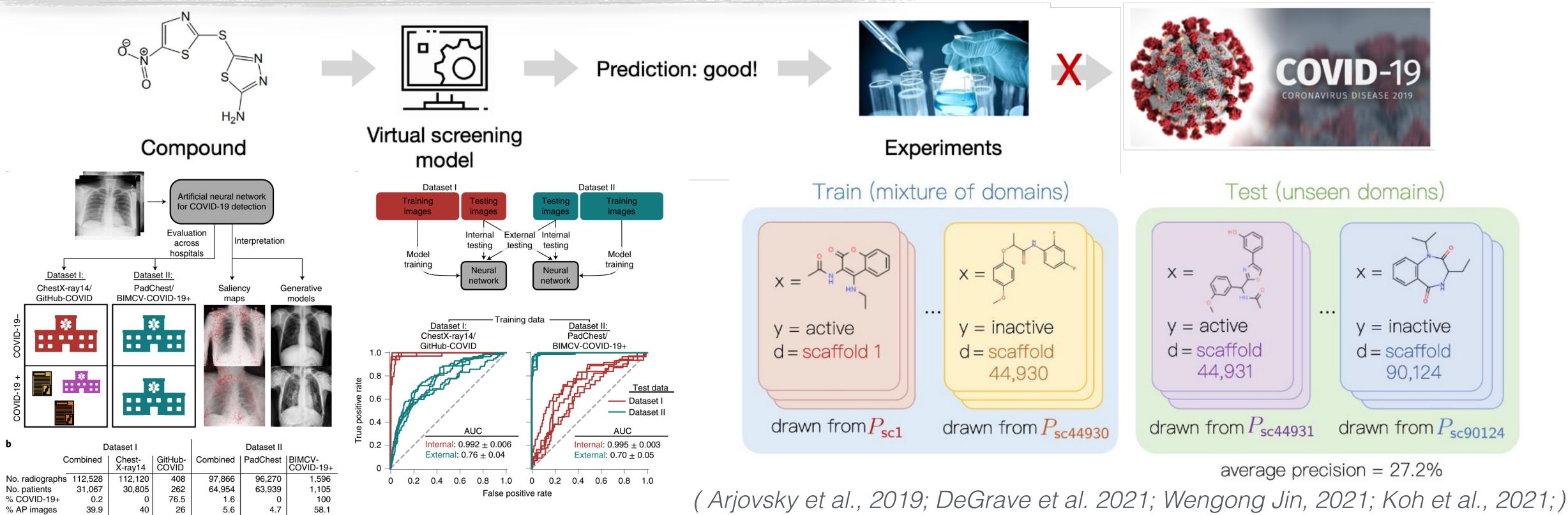


香港中文大學 The Chinese University of Hong Kong

Learning Causally Invariant Representations for **Out-of-Distribution Generalization on Graphs**

Yongqiang Chen CUHK, Tencent AI Lab

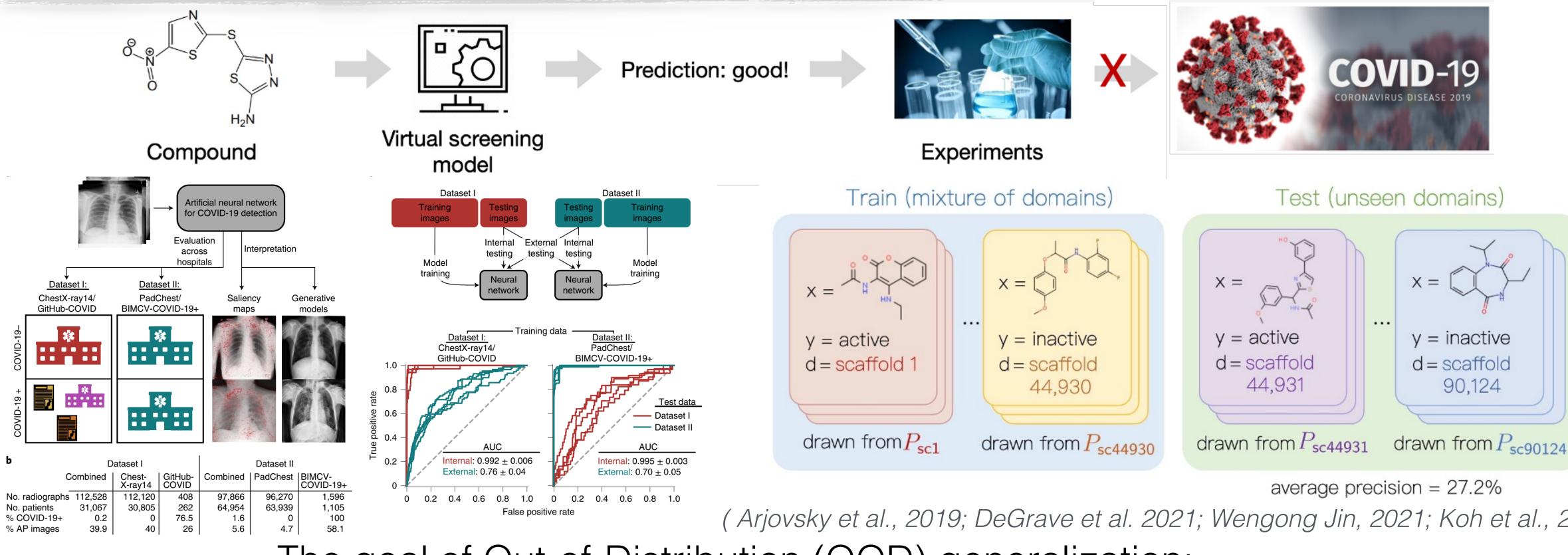
with Yonggang Zhang, Yatao Bian, Han Yang, Binghui Xie, Kaili Ma, Tongliang Liu, Bo Han, and James Cheng



Models learned with Empirical Risk Minimization often:

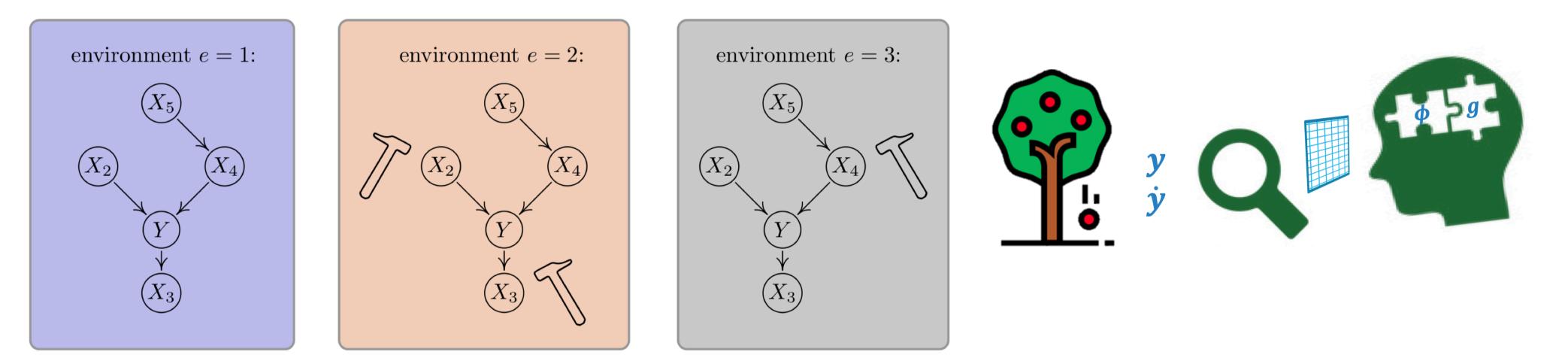
- are prone to **spurious correlations**

- fail catastrophically in **OOD** data

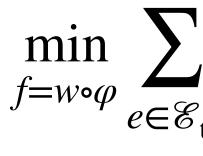


(Arjovsky et al., 2019; DeGrave et al. 2021; Wengong Jin, 2021; Koh et al., 2021;) The goal of Out-of-Distribution (OOD) generalization:

 $\min_{f:\mathcal{X} \to \mathcal{Y}} \max_{e \in \mathscr{E}_{all}} \mathscr{L}_e(f)$ given a subset of training **environments**/domains $\mathscr{E}_{tr} \subseteq \mathscr{E}_{s11}$, where each $e \in \mathscr{E}$ corresponds to a dataset \mathscr{D}_{ρ} and a loss \mathscr{L}_{ρ} .



aim to learn an **invariant** predictor f,



s.t. $w \in arg$

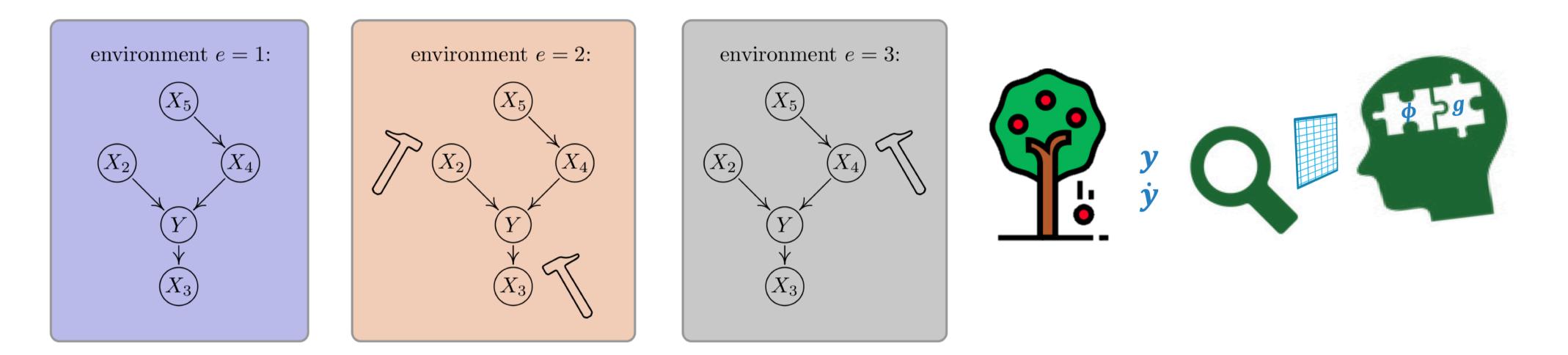
Leveraging the Invariance Principle from causality, previous approaches

$$\mathscr{L}_{e}(w \circ \varphi),$$

$$\min_{\bar{w}} \mathscr{L}_{e}(\bar{w} \circ \varphi), \, \forall e \in \mathscr{E}_{\mathrm{tr}},$$

that is **simultaneously optimal** across different environments/domains.

(Peters et al., 2015; Arjovsky et al., 2019; Bottou et al., 2021;)

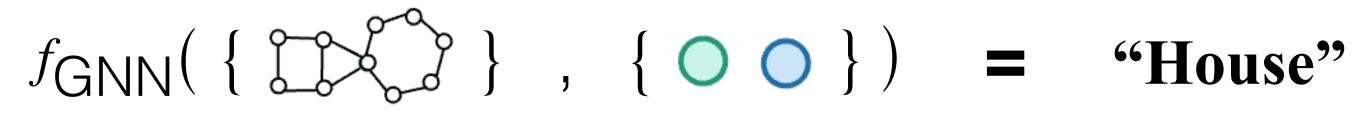


- help to learn the **invariant representations** -
- but only works on **linear** regime
- but only works on **single** distribution shifts but requires **environment**/domain label

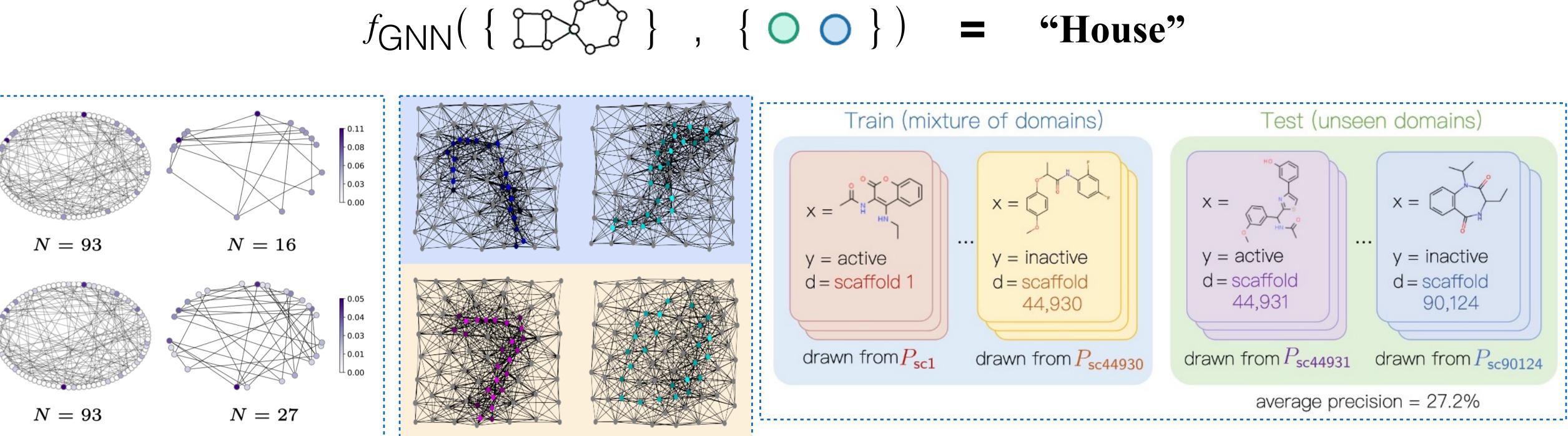
(Peters et al., 2015; Arjovsky et al., 2019; Rosenfeld et al., 2021; Kamath et al., 2021; Ahuja et al., 2021;)

Previous approaches inspired by the **Invariance Principle** from causality can:

A Graph Neural Network (GNN) makes predictions taking both structure-level and node **attribute-level** features into account.



A Graph Neural Network (GNN) makes predictions taking both structure-level and node attribute-level features into account.



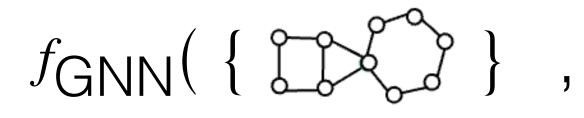
Structure-level shifts

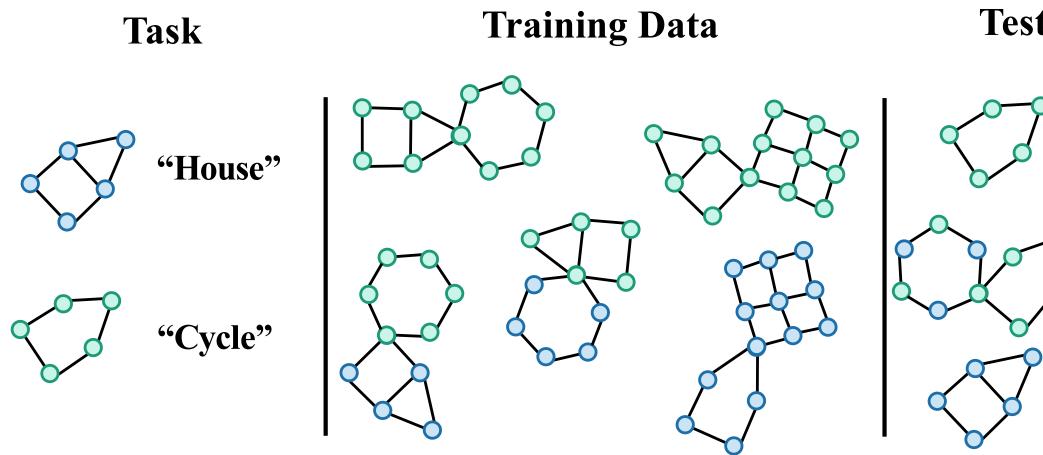
Attribute-level shifts

Mixture of structure-level and attribute-level shifts

(Knyazev et al. 2019; Hu et al., 2020; Koh et al., 2021; Gui et al., 2022) 7

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute**level** features into account.





(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

$f_{\text{GNN}}(\{ \square \} \}, \{ \bigcirc \bigcirc \}) = \text{"House"}$

Testing Data

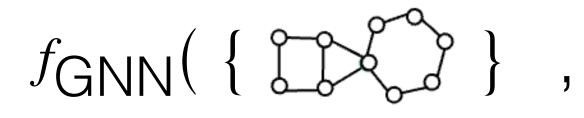
OOD generalization on graphs are much more challenging!

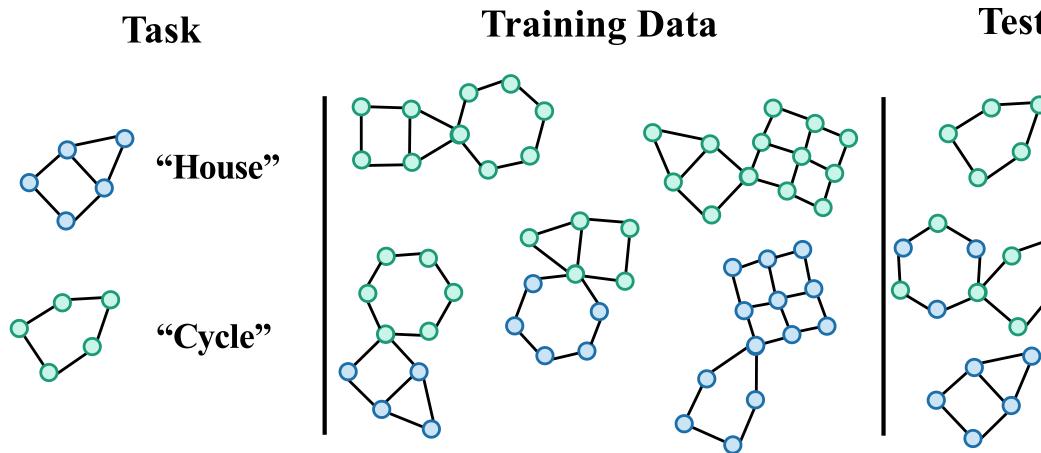
'Cycle''

"Cycle"

"House"

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute**level** features into account.





(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

$f_{\text{GNN}}(\{ \square \} \}, \{ \bigcirc \bigcirc \}) = \text{"House"}$

Testing Data

'Cycle''

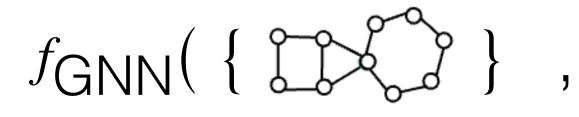
"Cycle"

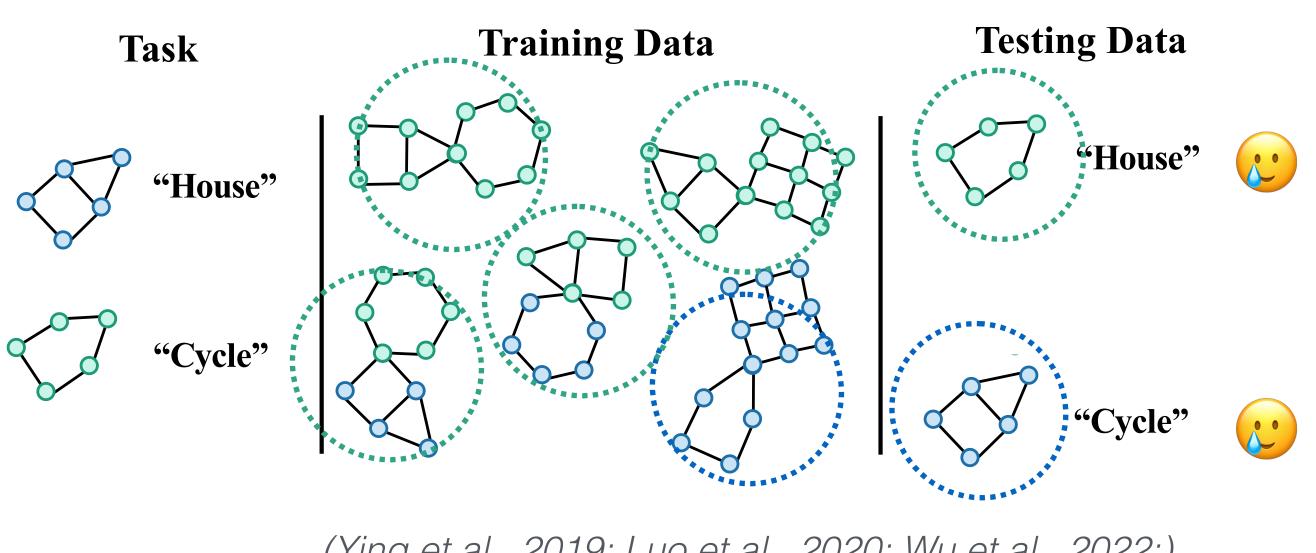
"House"

OOD generalization on graphs are much more challenging!

Graphs are highly non-linear

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute**level** features into account.



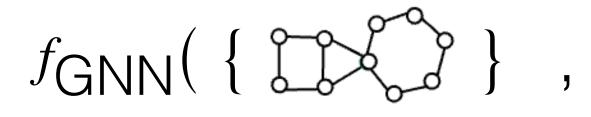


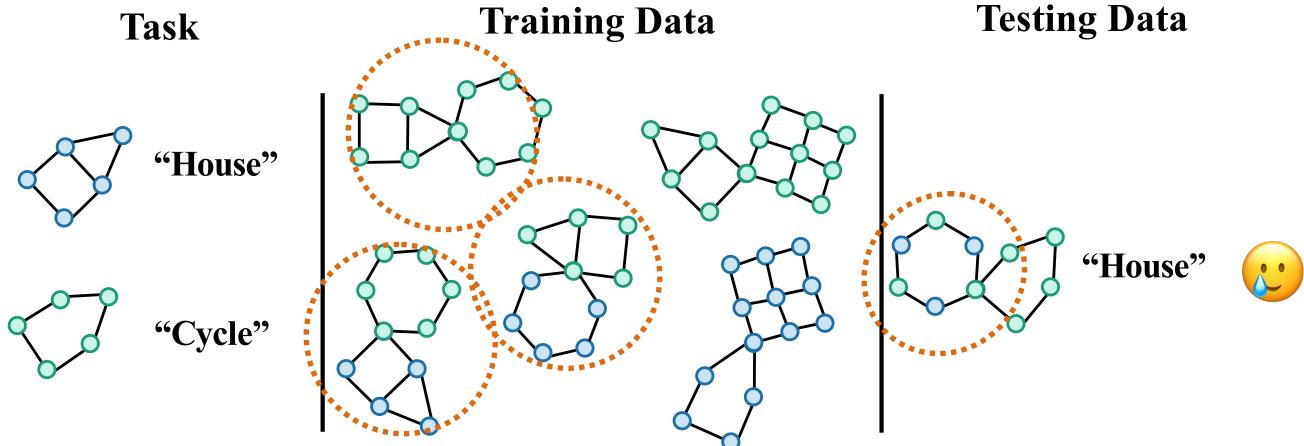
(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

$f_{\text{GNN}}(\{ \square \} \}, \{ \bigcirc \bigcirc \}) = \text{"House"}$

- Graphs are highly non-linear
- **Attribute-level shifts**

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute**level** features into account.



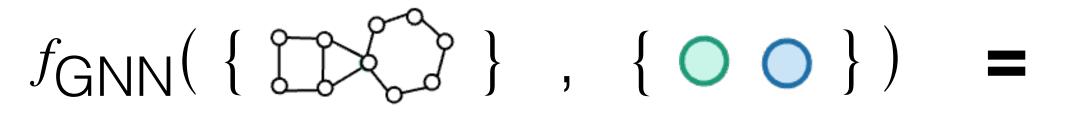


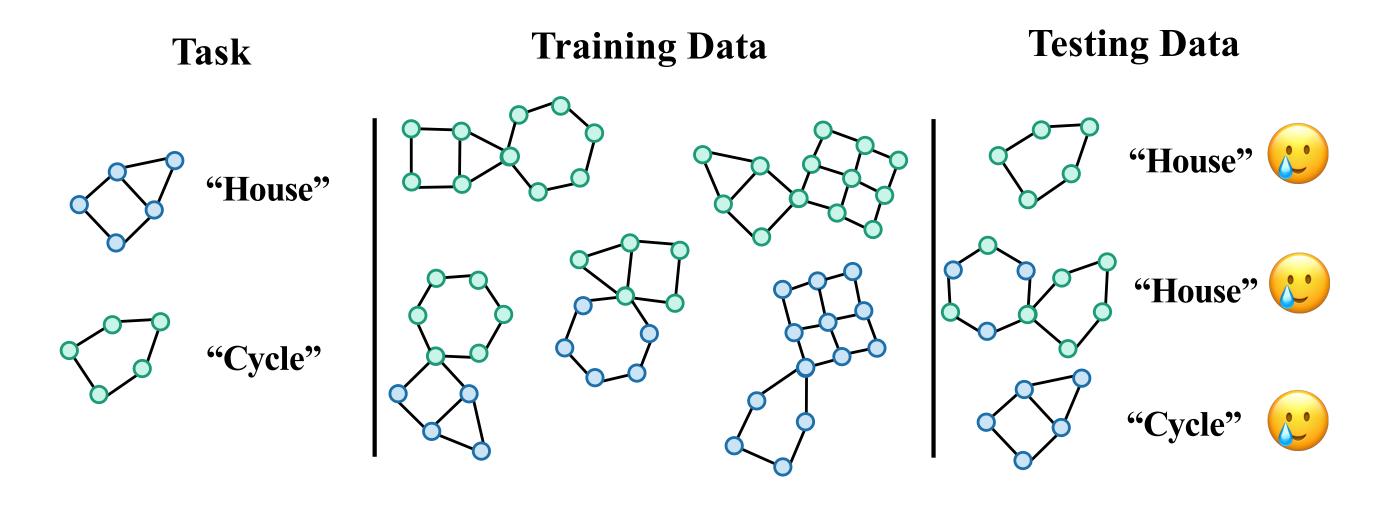
(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

$f_{\text{GNN}}(\{ \square \} \}, \{ \bigcirc \bigcirc \}) = \text{"House"}$

- Graphs are highly non-linear
- Attribute-level shifts
- **Structure-level shifts**

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute**level** features into account.



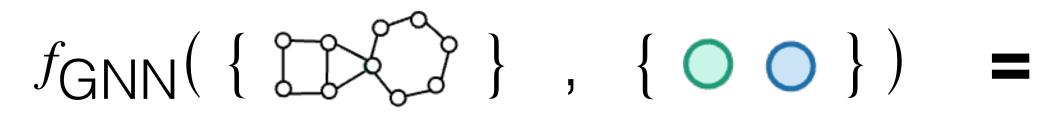


(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

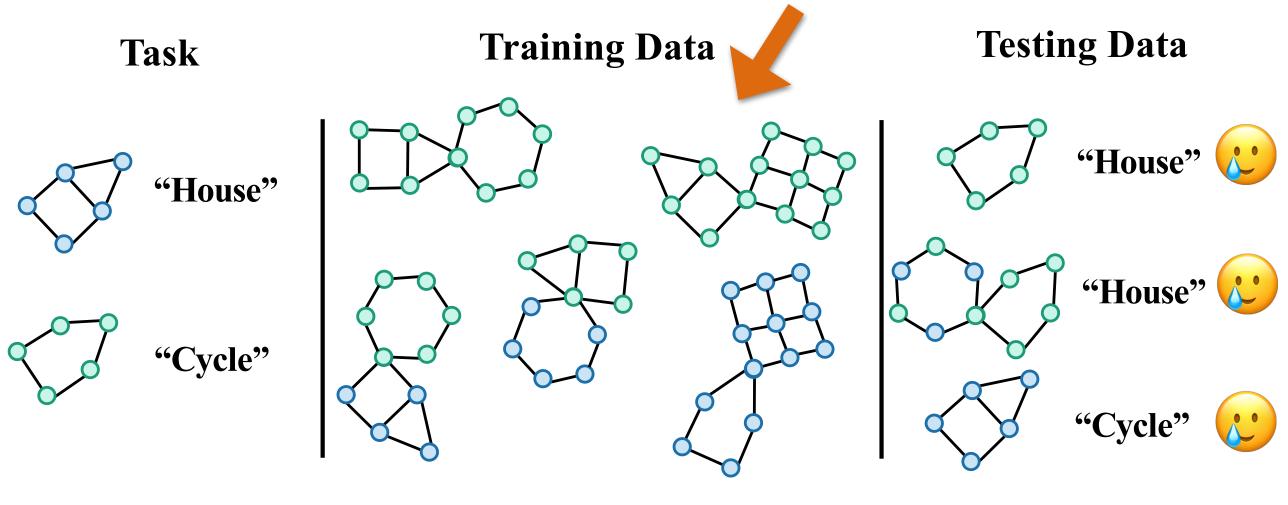
"House"

- Graphs are highly non-linear
- Attribute-level shifts
- Structure-level shifts
- Mixed shifts in different modes

A Graph Neural Network (GNN) makes predictions taking both structure-level and attribute**level** features into account.



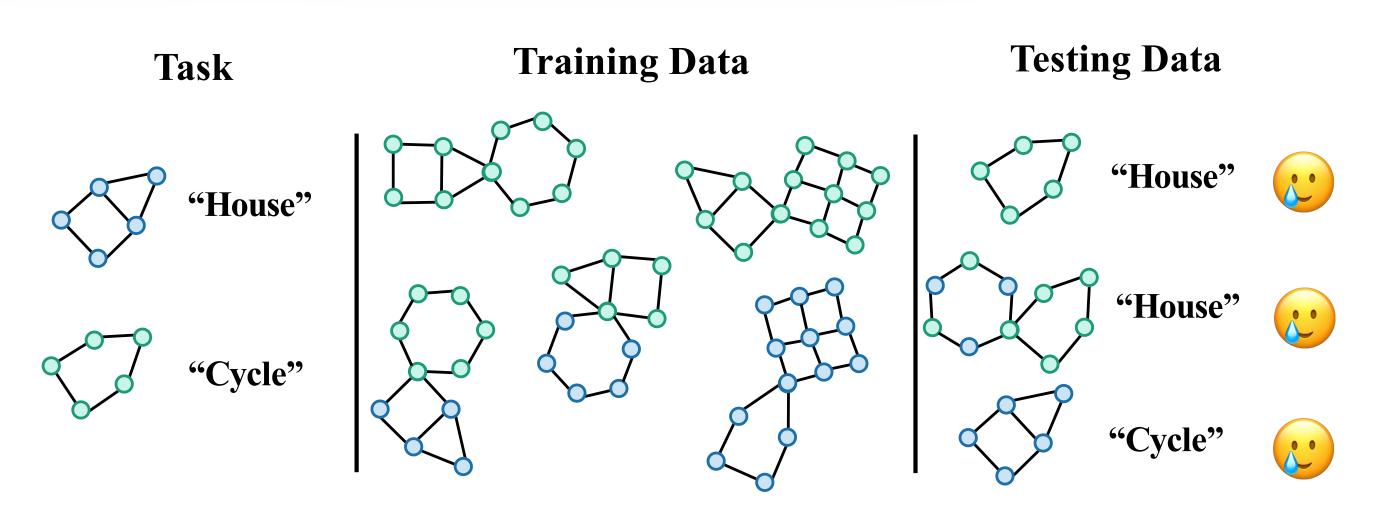
No environment partitions



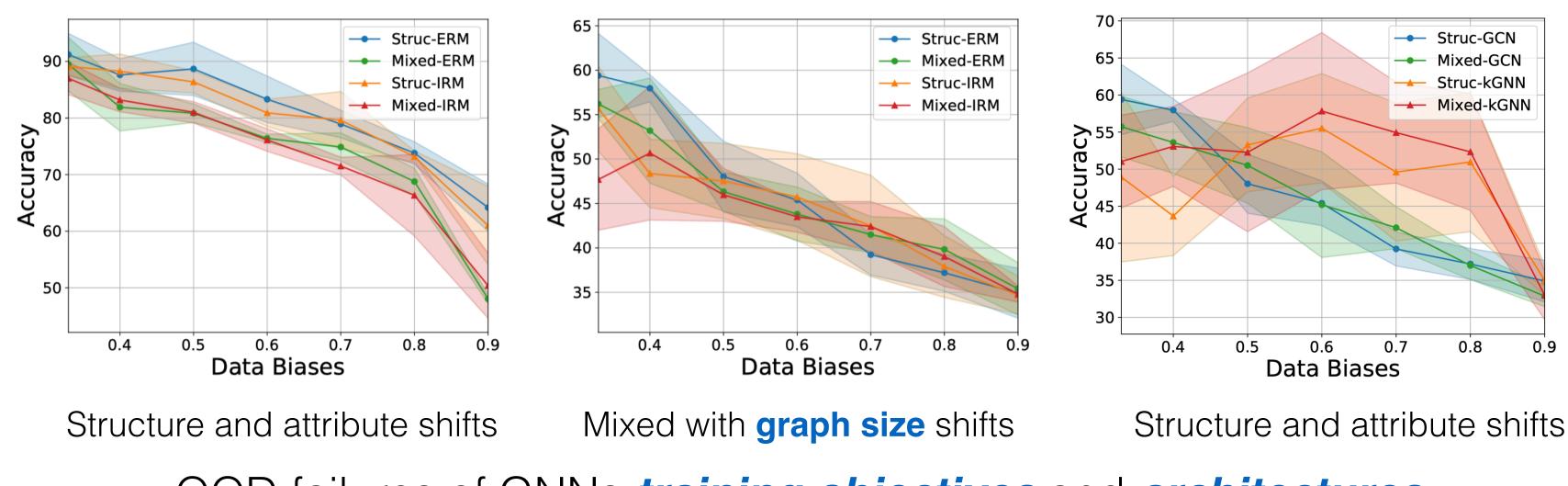
(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

"House"

- Graphs are highly non-linear
- Attribute-level shifts
- Structure-level shifts
- Mixed shifts in different modes
- **Expensive environment labels**



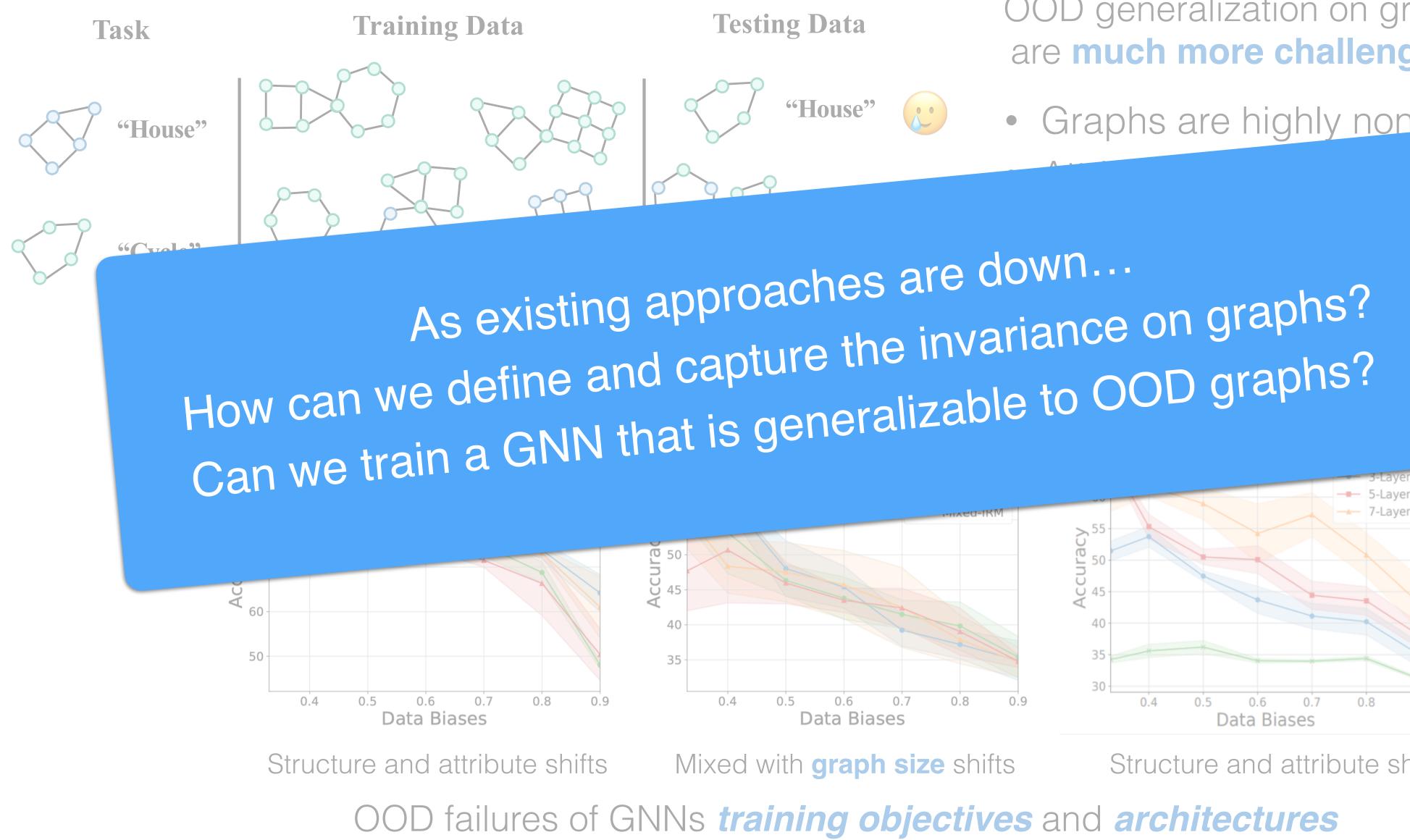
(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)



OOD generalization on graphs are much more challenging!

- Graphs are highly non-linear
- Attribute-level shifts
- Structure-level shifts
- Mixed shifts in different modes
- Expensive environment labels

OOD failures of GNNs *training objectives* and *architectures*



OOD generalization on graphs are much more challenging!

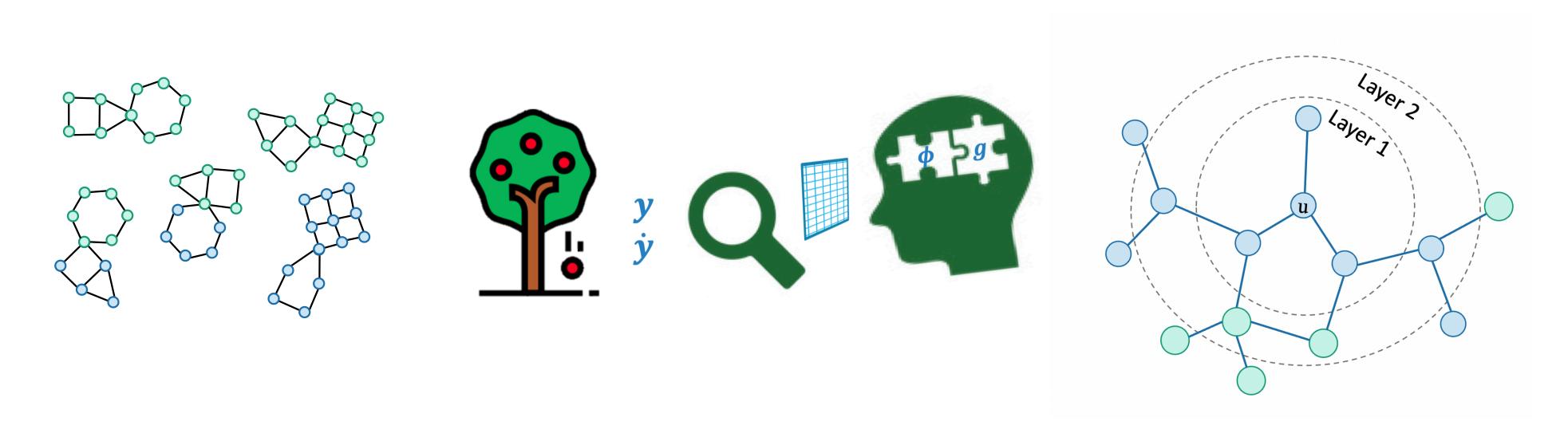
• Graphs are highly non-linear

Structure and attribute shifts

15

modes

Invariance Principle Meets Graph Neural Networks

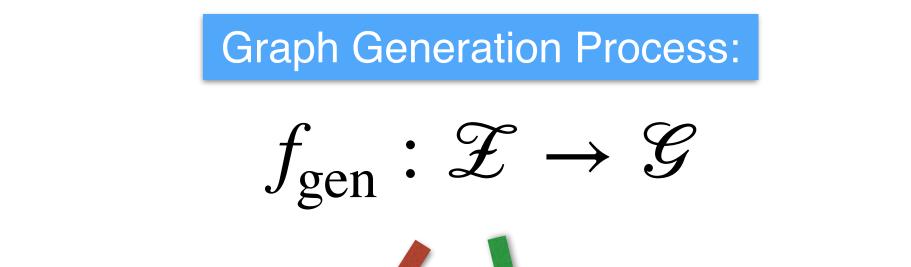


for generalizing to out-of-distribution graph data

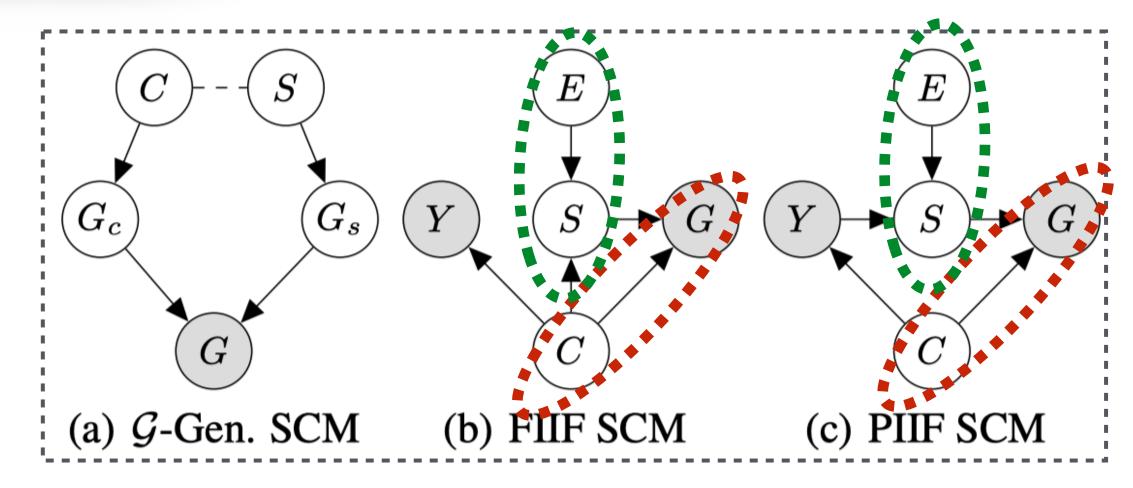
Figure source: Léon Bottou

Structural Causal Models for graph generalization

Spurious features

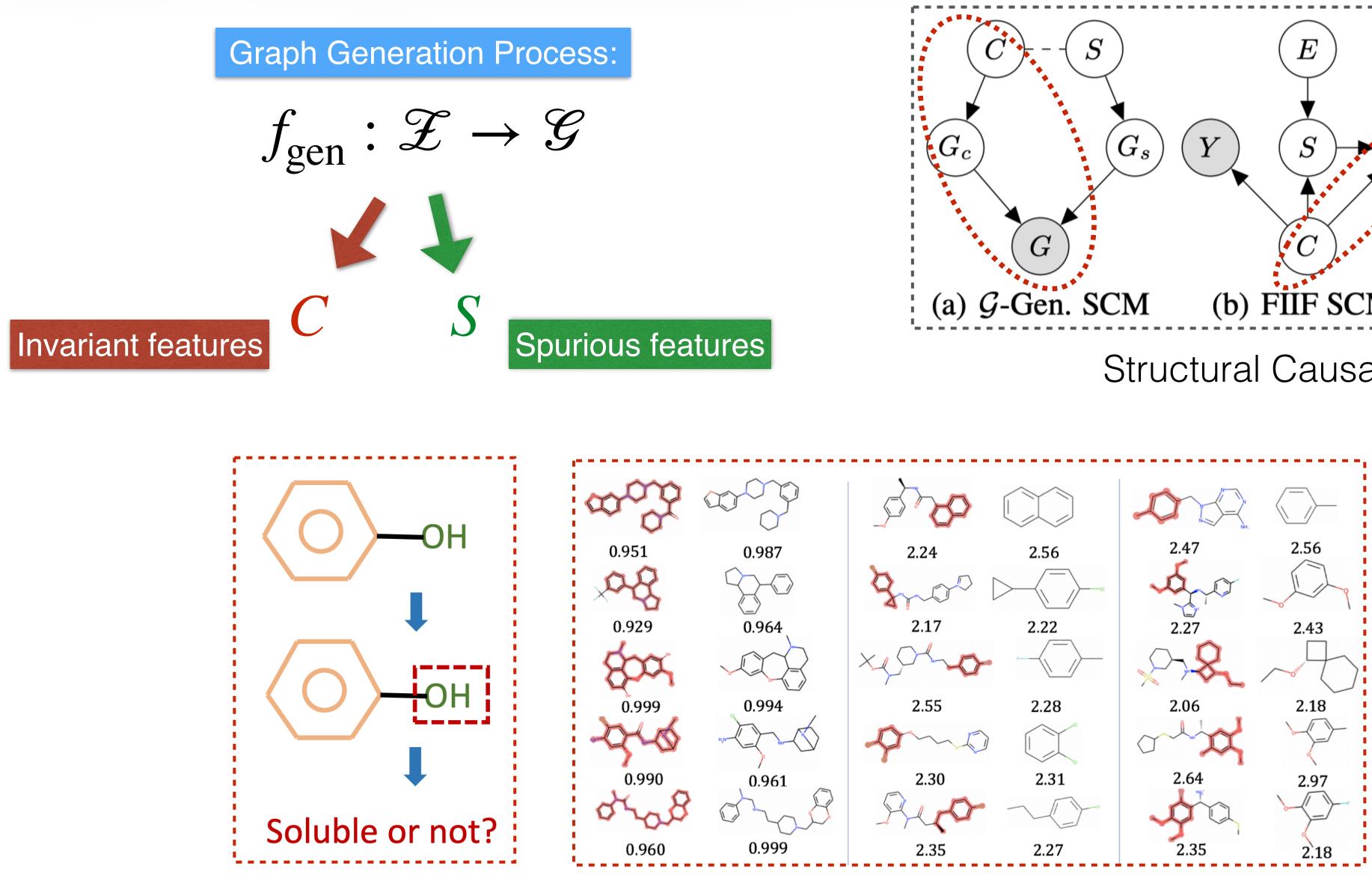


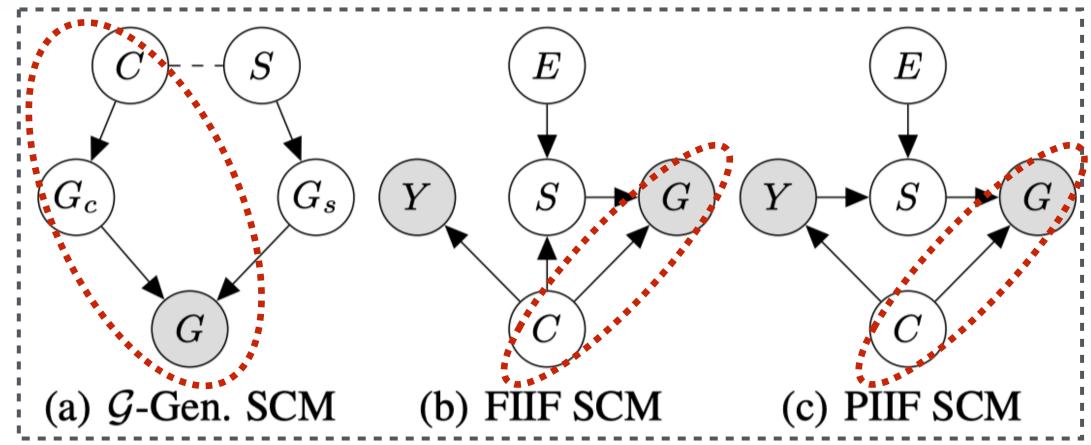
S



Structural Causal Models

Structural Causal Models for graph generalization

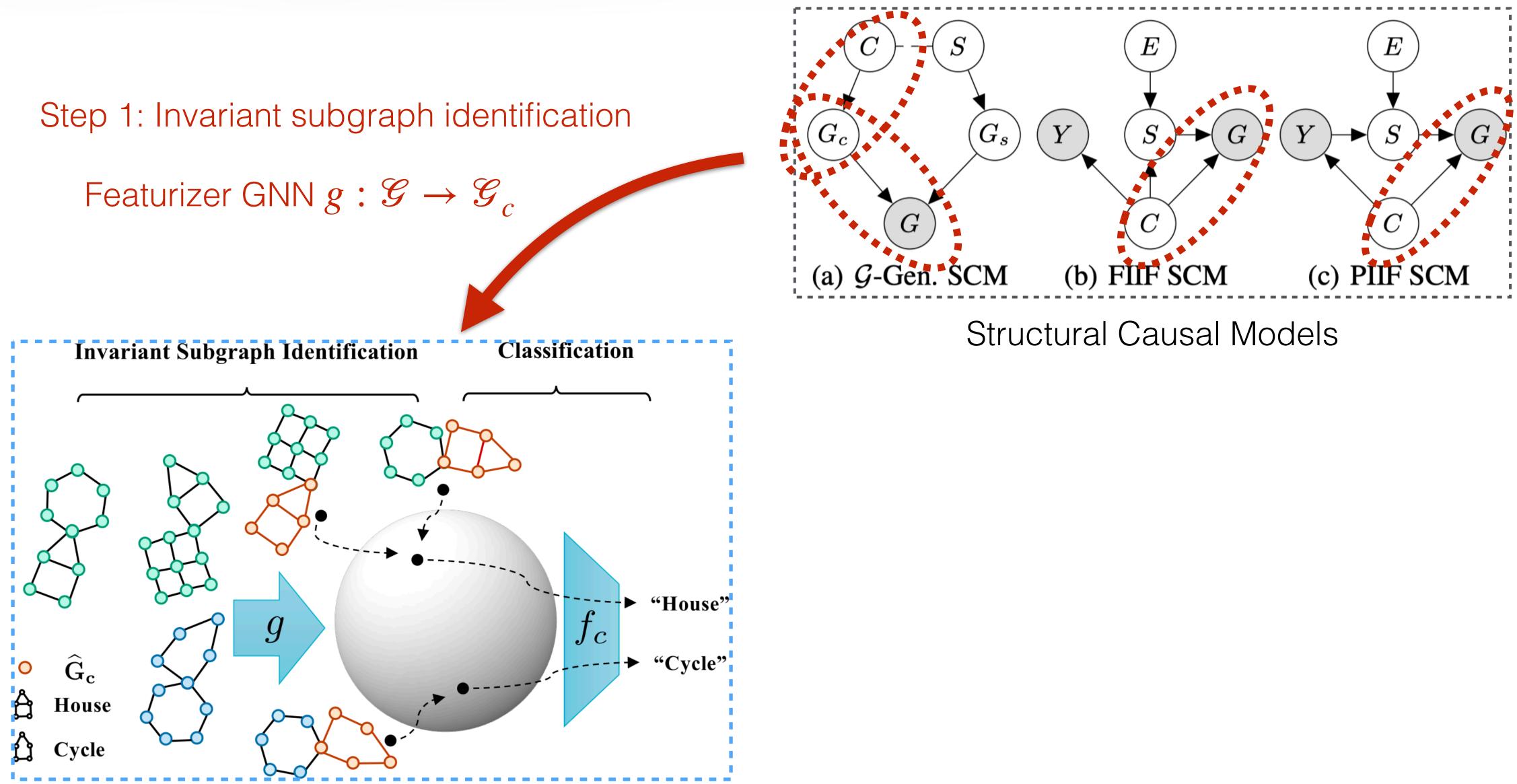


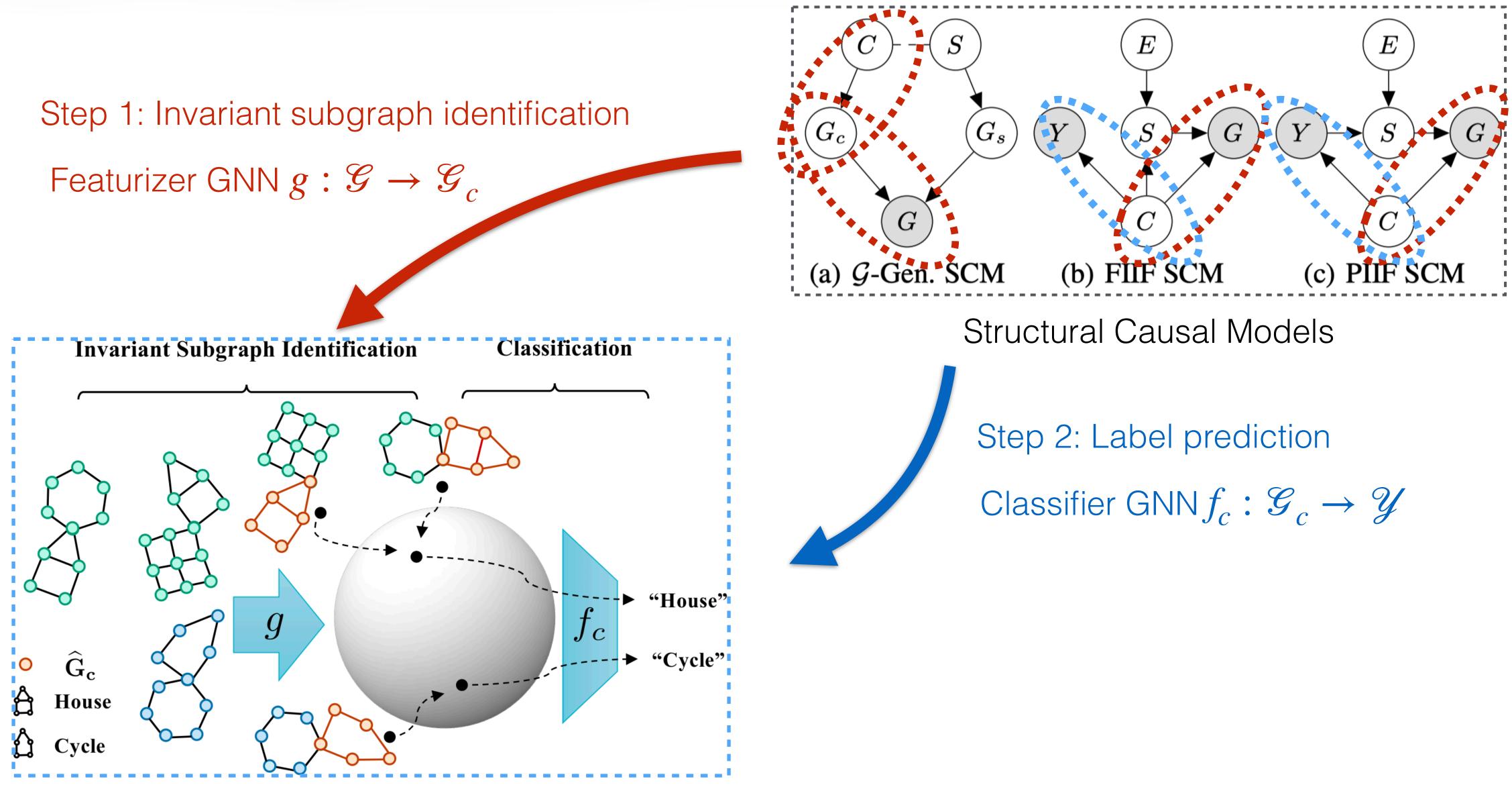


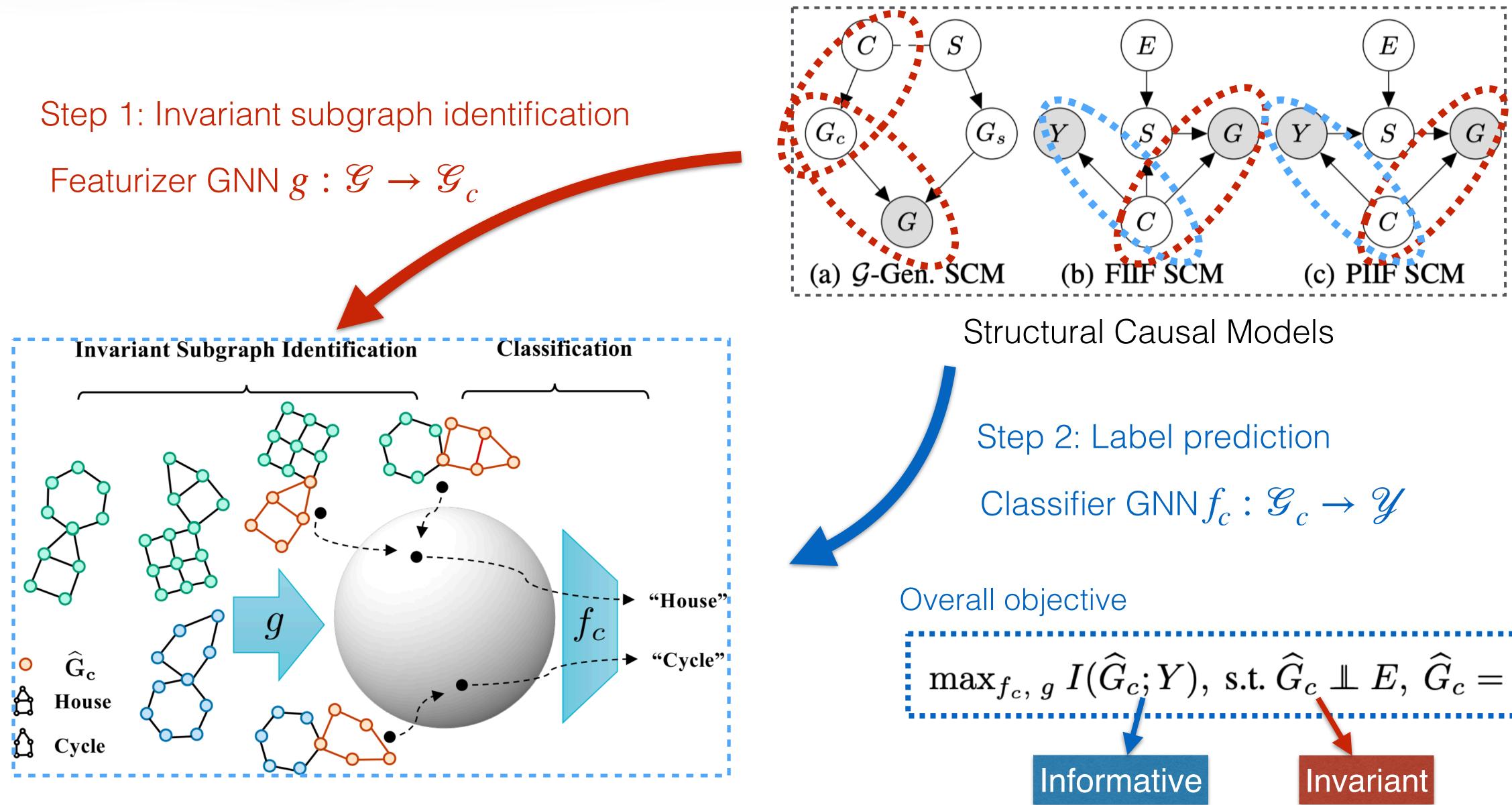
Structural Causal Models

(Yu et al., 2021; Miao et al., 2022;)

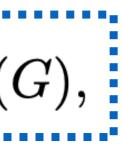
Realistic examples





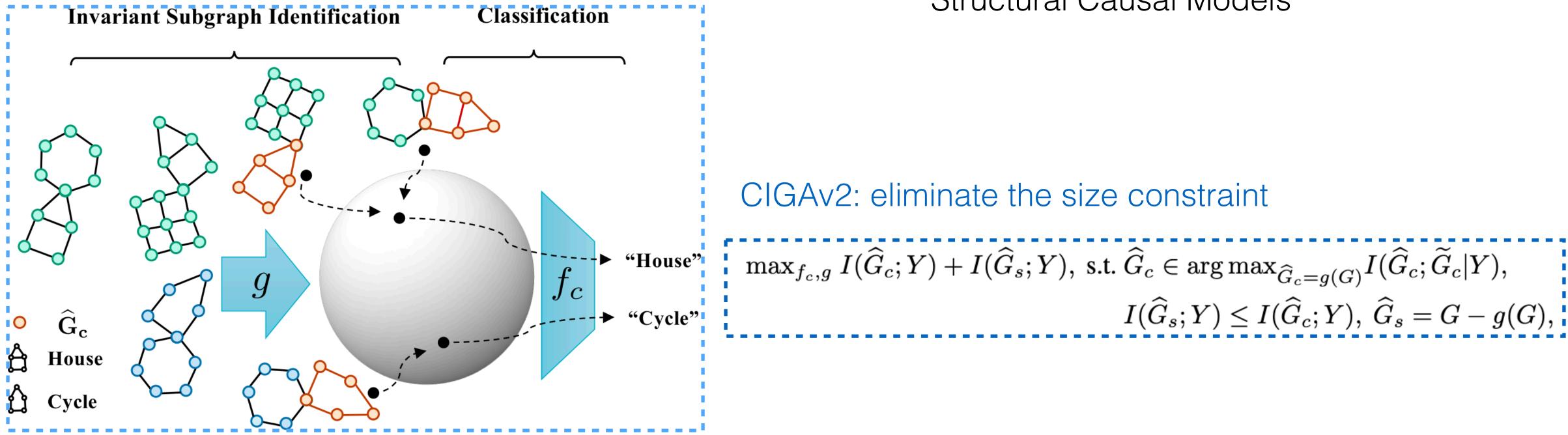


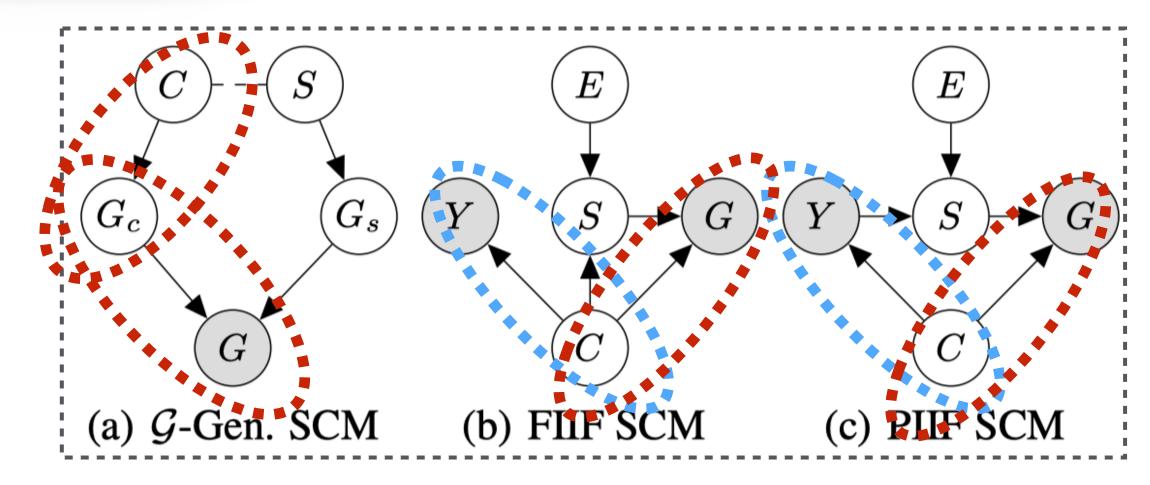
 $\max_{f_c, g} I(\widehat{G}_c; Y), \text{ s.t. } \widehat{G}_c \perp E, \ \widehat{G}_c = g(G),$



CIGAv1: when
$$|G_c| = s_c$$
 is known and fixed

$$\max_{f_c,g} I(\widehat{G}_c;Y), \text{ s.t. } \widehat{G}_c \in \max_{\widehat{G}_c = g(G), |\widehat{G}_c| \leq s_c} I(\widehat{G}_c;\widetilde{G}_c|Y),$$





Structural Causal Models

Experiments on synthetic graph distribution shifts

Theoretical results (Informal):

Given the previous SCMs, each solution to CIGAv1 or CIGAv2 elicits a GNN that is generalizable against various distribution shifts, with some mild assumptions on training environments, and the expressivity of GNNs encoders.

	$SPMOTIF-STRUC^{\dagger}$			SPM OTIF- M IXED ^{\dagger}			
	BIAS=0.33	BIAS=0.60	BIAS=0.90	BIAS=0.33	BIAS=0.60	BIAS=0.90	AVG
ERM	59.49 (3.50)	55.48 (4.84)	49.64 (4.63)	58.18 (4.30)	49.29 (8.17)	41.36 (3.29)	52.24
ASAP	64.87 (13.8)	64.85 (10.6)	57.29 (14.5)	66.88 (15.0)	59.78 (6.78)	50.45 (4.90)	60.69
DIR	58.73 (11.9)	48.72 (14.8)	41.90 (9.39)	67.28 (4.06)	51.66 (14.1)	38.58 (5.88)	51.14
IRM	57.15 (3.98)	61.74 (1.32)	45.68 (4.88)	58.20 (1.97)	49.29 (3.67)	40.73 (1.93)	52.13
V-REX	54.64 (3.05)	53.60 (3.74)	48.86 (9.69)	57.82 (5.93)	48.25 (2.79)	43.27 (1.32)	51.07
EIIL	56.48 (2.56)	60.07 (4.47)	55.79 (6.54)	53.91 (3.15)	48.41 (5.53)	41.75 (4.97)	52.73
IB-IRM	58.30 (6.37)	54.37 (7.35)	45.14 (4.07)	57.70 (2.11)	50.83 (1.51)	40.27 (3.68)	51.10
CNC	70.44 (2.55)	66.79 (9.42)	50.25 (10.7)	65.75 (4.35)	59.27 (5.29)	41.58 (1.90)	59.01
CIGAv1	71.07 (3.60)	63.23 (9.61)	51.78 (7.29)	74.35 (1.85)	64.54 (8.19)	49.01 (9.92)	62.33
CIGAv2	77.33 (9.13)	69.29 (3.06)	63.41 (7.38)	72.42 (4.80)	70.83 (7.54)	54.25 (5.38)	67.92
ORACLE (IID)		88.70 (0.17)			88.73 (0.25)		

CIGA outperforms previous methods under *structure and mixed shifts* by a significant margin up to 10%.

Experiments on realistic graph distribution shifts

Theoretical results (Informal):

Given the previous SCMs, each solution to CIGAv1 or CIGAv2 elicits a GNN that is generalizable against various distribution shifts, with some mild assumptions on training environments, and the expressivity of GNNs encoders.

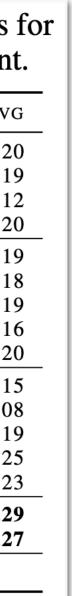
DATASETS	Drug-Assay	Drug-Sca	Drug-Size	CMNIST-SP	GRAPH-SST5	TWITTER	AVG (RANK)
ERM	71.79 (0.27)	68.85 (0.62)	66.70 (1.08)	13.96 (5.48)	43.89 (1.73)	60.81 (2.05)	54.33 (6.00)
ASAP	70.51 (1.93)	66.19 (0.94)	64.12 (0.67)	10.23 (0.51)	44.16 (1.36)	60.68 (2.10)	52.65 (8.33)
GIB	63.01 (1.16)	62.01 (1.41)	55.50 (1.42)	15.40 (3.91)	38.64 (4.52)	48.08 (2.27)	47.11 (10.0)
DIR	68.25 (1.40)	63.91 (1.36)	60.40 (1.42)	15.50 (8.65)	41.12 (1.96)	59.85 (2.98)	51.51 (9.33)
IRM	72.12 (0.49)	68.69 (0.65)	66.54 (0.42)	31.58 (9.52)	43.69 (1.26)	63.50 (1.23)	57.69 (4.50)
V-REX	72.05 (1.25)	68.92 (0.98)	66.33 (0.74)	10.29 (0.46)	43.28 (0.52)	63.21 (1.57)	54.01 (6.17)
EIIL	72.60 (0.47)	68.45 (0.53)	66.38 (0.66)	30.04 (10.9)	42.98 (1.03)	62.76 (1.72)	57.20 (5.33)
IB-IRM	72.50 (0.49)	68.50 (0.40)	66.64 (0.28)	39.86 (10.5)	40.85 (2.08)	61.26 (1.20)	58.27 (5.33)
CNC	72.40 (0.46)	67.24 (0.90)	65.79 (0.80)	12.21 (3.85)	42.78 (1.53)	61.03 (2.49)	53.56 (7.50)
CIGAv1	72.71 (0.52)	69.04 (0.86)	67.24 (0.88)	19.77 (17.1)	44.71 (1.14)	63.66 (0.84)	56.19 (2.50)
CIGAv2	73.17 (0.39)	69.70 (0.27)	67.78 (0.76)	44.91 (4.31)	45.25 (1.27)	64.45 (1.99)	60.88 (1.00)
ORACLE (IID)	85.56 (1.44)	84.71 (1.60)	85.83 (1.31)	62.13 (0.43)	48.18 (1.00)	64.21 (1.77)	

Table 2: OOD generalization performance on complex distribution shifts for real world graphs

CIGA outperforms previous methods under other *realistic shifts* by a significant margin up to **10%**.

Table 3: OOD generalization performance on graph size shifts for real-world graphs in terms of Matthews correlation coefficient.

DATASETS	NCI1	NCI109	PROTEINS	DD	Av
ERM	0.15 (0.05)	0.16 (0.02)	0.22 (0.09)	0.27 (0.09)	0.2
ASAP	0.16 (0.10)	0.15 (0.07)	0.22 (0.16)	0.21 (0.08)	0.1
GIB	0.13 (0.10)	0.16 (0.02)	0.19 (0.08)	0.01 (0.18)	0.1
DIR	0.21 (0.06)	0.13 (0.05)	0.25 (0.14)	0.20 (0.10)	0.2
IRM	0.17 (0.02)	0.14 (0.01)	0.21 (0.09)	0.22 (0.08)	0.1
V-REX	0.15 (0.04)	0.15 (0.04)	0.22 (0.06)	0.21 (0.07)	0.1
EIIL	0.14 (0.03)	0.16 (0.02)	0.20(0.05)	0.23 (0.10)	0.1
IB-IRM	0.12 (0.04)	0.15 (0.06)	0.21 (0.06)	0.15 (0.13)	0.1
CNC	0.16 (0.04)	0.16 (0.04)	0.19 (0.08)	0.27 (0.13)	0.2
WL KERNEL	0.39 (0.00)	0.21 (0.00)	0.00 (0.00)	0.00 (0.00)	0.1
GC KERNEL	0.02 (0.00)	0.00 (0.00)	0.29 (0.00)	0.00 (0.00)	0.0
$\Gamma_{1 ext{-} ext{HOT}}$	0.17 (0.08)	0.25 (0.06)	0.12 (0.09)	0.23 (0.08)	0.1
$\Gamma_{ m GIN}$	0.24 (0.04)	0.18 (0.04)	0.29 (0.11)	0.28 (0.06)	0.2
$\Gamma_{\rm RPGIN}$	0.26 (0.05)	0.20 (0.04)	0.25 (0.12)	0.20 (0.05)	0.2
CIGAv1	0.22 (0.07)	0.23 (0.09)	0.40 (0.06)	0.29 (0.08)	0.2
CIGAv2	0.27 (0.07)	0.22 (0.05)	0.31 (0.12)	0.26 (0.08)	0.2
ORACLE (IID)	0.32 (0.05)	0.37 (0.06)	0.39 (0.09)	0.33 (0.05)	



Experiments on realistic graph distribution shifts

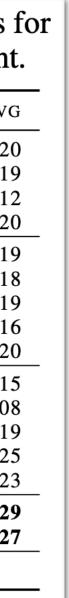
CIGA is the only approach that consistently outperforms ERM in the challenging setting from Al-aided drug discovery — DrugOOD.

DATASETS	DRUG-ASSAY	Drug-Sca	Drug-Size	CMNIST-SP	GRAPH-SST5	TWITTER	AVG (RANK)
ERM	71.79 (0.27)	68.85 (0.62)	66.70 (1.08)	13.96 (5.48)	43.89 (1.73)	60.81 (2.05)	54.33 (6.00)
ASAP	70.51 (1.93)	66.19 (0.94)	64.12 (0.67)	10.23 (0.51)	44.16 (1.36)	60.68 (2.10)	52.65 (8.33)
GIB	63.01 (1.16)	62.01 (1.41)	55.50 (1.42)	15.40 (3.91)	38.64 (4.52)	48.08 (2.27)	47.11 (10.0)
DIR	68.25 (1.40)	63.91 (1.36)	60.40 (1.42)	15.50 (8.65)	41.12 (1.96)	59.85 (2.98)	51.51 (9.33)
IRM	72.12 (0.49)	68.69 (0.65)	66.54 (0.42)	31.58 (9.52)	43.69 (1.26)	63.50 (1.23)	57.69 (4.50)
V-REX	72.05 (1.25)	68.92 (0.98)	66.33 (0.74)	10.29 (0.46)	43.28 (0.52)	63.21 (1.57)	54.01 (6.17)
EIIL	72.60 (0.47)	68.45 (0.53)	66.38 (0.66)	30.04 (10.9)	42.98 (1.03)	62.76 (1.72)	57.20 (5.33)
IB-IRM	72.50 (0.49)	68.50 (0.40)	66.64 (0.28)	39.86 (10.5)	40.85 (2.08)	61.26 (1.20)	58.27 (5.33)
CNC	72.40 (0.46)	67.24 (0.90)	65.79 (0.80)	12.21 (3.85)	42.78 (1.53)	61.03 (2.49)	53.56 (7.50)
CIGAv1	72.71 (0.52)	69.04 (0.86)	67.24 (0.88)	19.77 (17.1)	44.71 (1.14)	63.66 (0.84)	56.19 (2.50)
CIGAv2	73.17 (0.39)	69.70 (0.27)	67.78 (0.76)	44.91 (4.31)	45.25 (1.27)	64.45 (1.99)	60.88 (1.00)
ORACLE (IID	85.56 (1.44)	84.71 (1.60)	85.83 (1.31)	62.13 (0.43)	48.18 (1.00)	64.21 (1.77)	

Table 3: OOD generalization performance on graph size shifts for real-world graphs in terms of Matthews correlation coefficient.

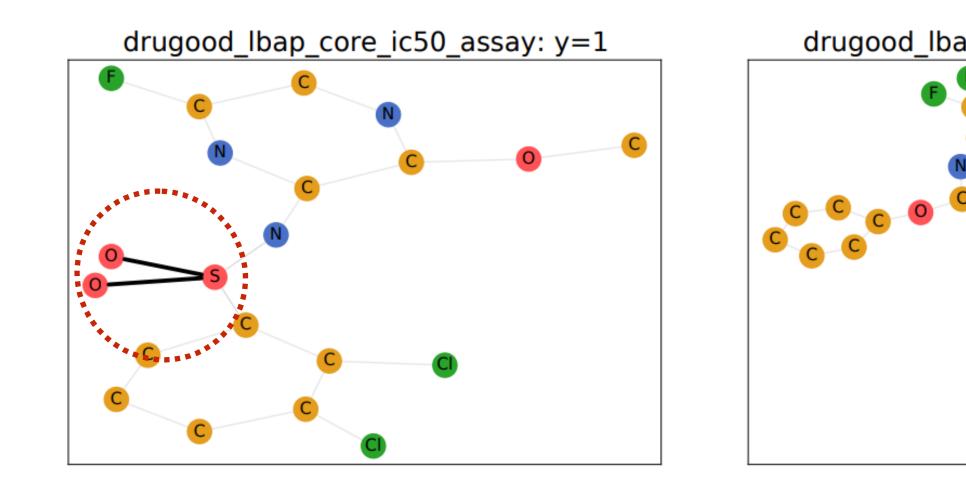
DATASETS	NCI1	NCI109	PROTEINS	DD	Ave
ERM	0.15 (0.05)	0.16 (0.02)	0.22 (0.09)	0.27 (0.09)	0.2
ASAP	0.16 (0.10)	0.15 (0.07)	0.22 (0.16)	0.21 (0.08)	0.1
GIB	0.13 (0.10)	0.16 (0.02)	0.19 (0.08)	0.01 (0.18)	0.1
DIR	0.21 (0.06)	0.13 (0.05)	0.25 (0.14)	0.20 (0.10)	0.2
IRM	0.17 (0.02)	0.14 (0.01)	0.21 (0.09)	0.22 (0.08)	0.1
V-REX	0.15 (0.04)	0.15 (0.04)	0.22 (0.06)	0.21 (0.07)	0.1
EIIL	0.14 (0.03)	0.16 (0.02)	0.20 (0.05)	0.23 (0.10)	0.1
IB-IRM	0.12 (0.04)	0.15 (0.06)	0.21 (0.06)	0.15 (0.13)	0.1
CNC	0.16 (0.04)	0.16 (0.04)	0.19 (0.08)	0.27 (0.13)	0.2
WL KERNEL	0.39 (0.00)	0.21 (0.00)	0.00 (0.00)	0.00 (0.00)	0.1
GC kernel	0.02 (0.00)	0.00 (0.00)	0.29 (0.00)	0.00 (0.00)	0.0
$\Gamma_{1 ext{-HOT}}$	0.17 (0.08)	0.25 (0.06)	0.12 (0.09)	0.23 (0.08)	0.1
$\Gamma_{\rm GIN}$	0.24 (0.04)	0.18 (0.04)	0.29 (0.11)	0.28 (0.06)	0.2
$\Gamma_{\rm RPGIN}$	0.26 (0.05)	0.20 (0.04)	0.25 (0.12)	0.20 (0.05)	0.2
CIGAV1	0.22 (0.07)	0.23 (0.09)	0.40 (0.06)	0.29 (0.08)	0.2
CIGAv2	0.27 (0.07)	0.22 (0.05)	0.31 (0.12)	0.26 (0.08)	0.2
ORACLE (IID)	0.32 (0.05)	0.37 (0.06)	0.39 (0.09)	0.33 (0.05)	

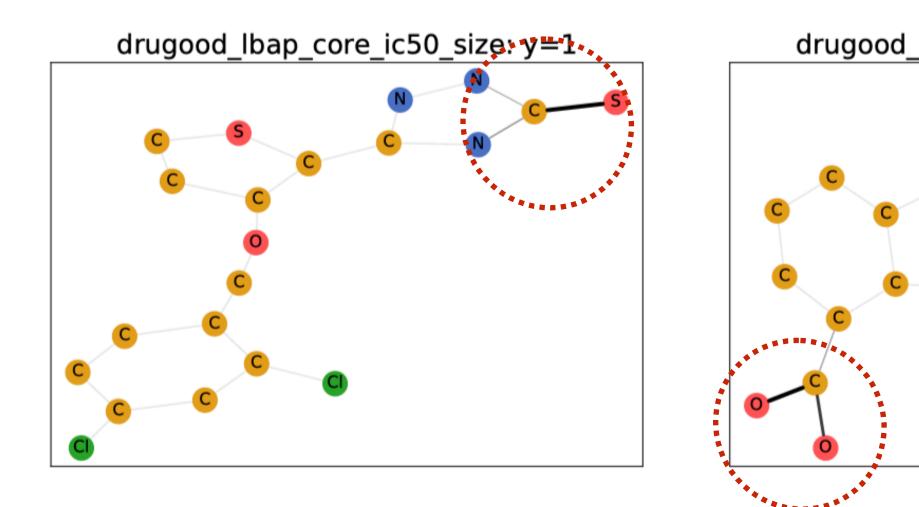
CIGA outperforms previous methods under other *realistic shifts* by a significant margin up to **10%**.

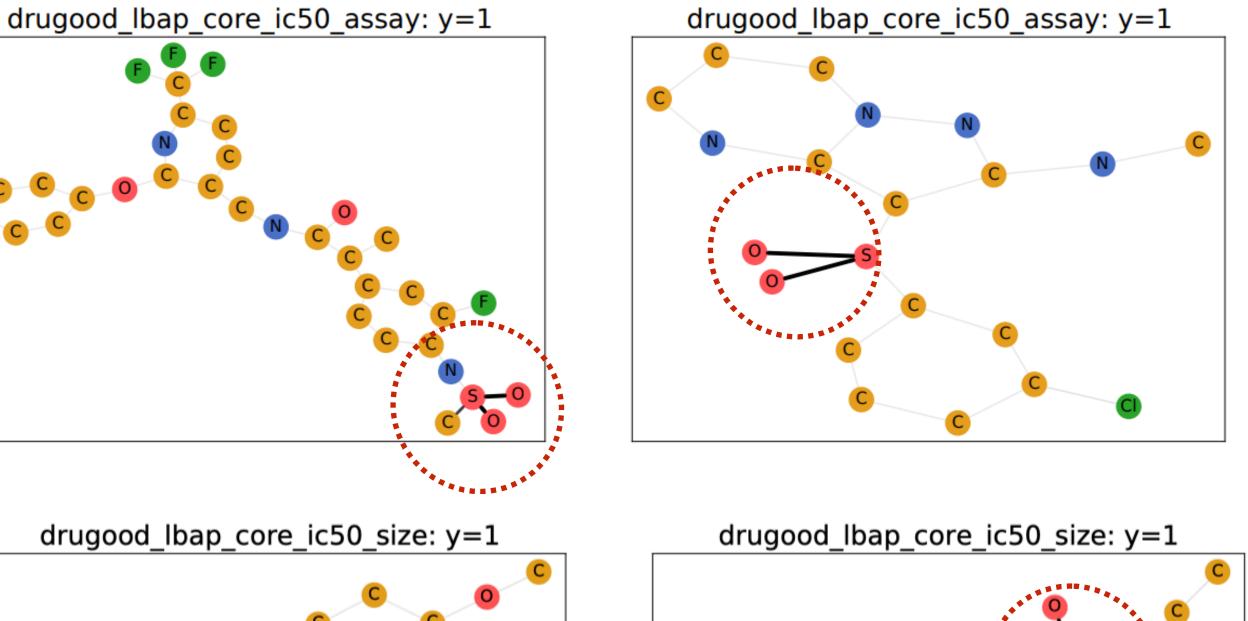


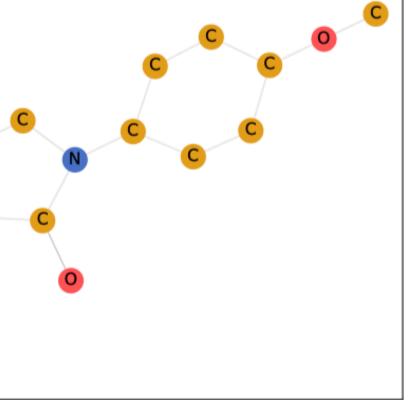
Interpretable Studies of CIGA

CIGA finds interesting critical functional groups/sub-molecules in OOD molecular affinity prediction.









(*Ji et al., 2022;*)

Summary

Through the lens of causality, we establish general SCMs to characterize the distribution shifts on graphs, and generalize the invariance principle to graphs.

We instantiate the invariance principle through a novel framework CIGA, where the prediction is decomposed into the subgraph identification and classification.

We show that the provable identification of the underlying invariant subgraph can be achieved using a contrastive strategy both theoretically and empirically.

YOU! Contact: <u>yqchen@cse.cuhk.edu.hk</u>