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• Learn next token distribution
Pθ( ⋅ |x1, ⋯, xt−1)

• Decode auto-regressively 
[Greedy Decoding]

           xt = arg max Pθ( ⋅ |x1, ⋯, xt−1)
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•However,
•The underlying model distribution is clearly problematic.

•Our work
•Analyze how sentence repetition occurs
•Propose a novel training-based model to improve model distribution
•Compatible with various decoding algorithms
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The probability of repetition (in red) increases almost monotonically
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• > 90% cases, probs of repeating the previous 
sentence increase

• E.g., P(‘orange’ | ‘I love orange . I love’) > 
P(‘orange’ | ‘I love’)

• The model has a strong preference to repeat 
the previous sentence

• Analyses

Y-axis: IP (Rate of Increased Token Probability)

Why the First Sentence Repetition Occurs?

•  > 90%
•
IP1



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

Increase but 
not argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

Increase but 
not argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

Increase but 
not argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

Increase but 
not argmax

Increase 
and is 
argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

Increase but 
not argmax

Increase 
and is 
argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

Increase but 
not argmax

Increase 
and is 
argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

Increase but 
not argmax

Increase 
and is 
argmax Increase 

and is 
argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

Increase but 
not argmax

Increase 
and is 
argmax Increase 

and is 
argmax

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



Why Model Gets Stuck into the Sentence-level Loop?
•Comparing the prob of repetitive sentences as number of repetition grows

• Metric: WR (Winner Rate)

                                                                       

•  is a winner if  and 

• Purpose: Measure how many of tokens are more likely to be generated by greedy decoding

WR(sn) =
1
Ls

Ls

∑
l=1

1(xn,l is a winner)

xn,l Pθ(xn,l |x<n,l) > Pθ(x0,l |x<0,l) xn,l = arg max P( ⋅ |x<n,l)

0.083
0.167

0.25
0.333
0.417

0.5

I love oranges . I love oranges . I love oranges .

Pθ(xt |x<t) max P( ⋅ |x<n,l)

Increase but 
not argmax

Increase but 
not argmax

Increase 
and is 
argmax Increase 

and is 
argmax

# winner=2
Ls = 4 = WR(s1) = 50 %

x = ( s0 s1 s2, , )

= = =

(x0,0 x0,1 x0,2 x0,3), , , (x1,0 x1,1 x1,2 x1,3), , , (x2,0 x2,1 x2,2 x2,3), , ,



• Analyses

IP1

• > 40% cases, the first repetition occurs. That is, the previous sentence is repetitively 
generated with 40% probability.

• Self-reinforcement effect: As number of repetitions grows, IP and WR significantly 
increase. In other words, more times repeating a sentence, higher probability continuing to 
generate that sentence.

Y-axis: IP (Rate of Increased Token Probability) Y-axis: WR (Winner Rate)

Why Model Gets Stuck into the Sentence-level Loop?

•  > 40%
•
WR•  > 90%

•
IP



What Kinds of Sentences are More Likely to be Repeated?
•Investigate sentences with different initial probabilities

•Metric: TP (Average Token Probabilities)

                                                                      

•Purpose: Measure the average token probability of the -th sentence 

TP(sn) =
1
Ls

Ls

∑
l=1

Pθ(xn,l |x<n,l)

n sn



What Kinds of Sentences are More Likely to be Repeated?

•Investigate TP, IP and WR across different corpus                                                                        
•Random Sentences [ ]: randomly sampled tokens

• E.g., “fría backed rounds Manganiello Stansel Zemin compressus .”

•Out-domain Sentences [ ]: BookCorpus

•In-domain Sentences [ ]: dev set of Wikitext-103

•For each corpus,  we calculate 

Drandom

Dbook
Dwiki

[TPn, IPn, WRn]N
n=1

•Investigate sentences with different initial probabilities
•Metric: TP (Average Token Probabilities)

                                                                      

•Purpose: Measure the average token probability of the -th sentence 

TP(sn) =
1
Ls

Ls

∑
l=1

Pθ(xn,l |x<n,l)

n sn



Analyses

IP1

• Self-reinforcement effect exists even in random sentences
• High prob sentences are more likely to be repeated.

What Kinds of Sentences are More Likely to be Repeated?
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DITTO - pseuDo-repetITion penalizaTiOn

• Core issue: Self-reinforcement effect
• Reason: Models don’t know how to handle repetitive sentences
• Motivation: Let model train on repetitive sentence and learn to be 
averse to such repetitions 

• Method
• Positive Data: Ground-truth corpus
• Negativa Data: Pseudo Repetitive data

• Randomly pick a sentence  from the training corpus

• Repeat  until they reaches the maximum input sequence length

                          

• Combine two kinds of data for training

s
s

x = (s0, ⋯, sN) = (x0,0, ⋯, x1,0, ⋯, xN,0, ⋯, xN,Ls
)



DITTO 
• Sentence-level Repetition Penalization on Negative Data

• Per-step penalization loss for token 

• Training objective for the -th token in the -th repetition
                           

•  is excluded for gradient backpropgation and  is the penalization factor

• Train the model by equally mixing  update and normal MLE loss update.

x ∈ {x1,0, ⋯, xN,Ls
}

l n

Ln,l
DITTO(Pθ(xn,l |x<n,l)) = − log(1 − Pθ(xn,l |x<n,l) − λ ⋅ P*θ (xn−1,l |x<n−1,l) )

P* λ
LDITTO
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• If  = 1
• Loss minimized when 

• It can avoid repetition probability increase monotonically.
• If  < 1

• Loss minimized when  where <1.

• The probability of tokens in repetitive sentence should decay exponentially with a factor of 

λ
Pθ(xn,l |x<n,l) = P*θ (xn−1,l |x<n−1,l)

λ
Pθ(xn,l |x<n,l) = λ ⋅ P*θ (xn−1,l |x<n−1,l) λ

λ
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Examples of Open-ended Generations (Greedy)

Context: The reports generated considerable discussion in the press which ultimately led to a 
heated debate in Parliament on 4 May 1920 .

DITTO: Sir Edward Cave , the Director of Public 
Prosecutions , was quoted as saying that " the 
Government has not been able to make a 
decision on the issue of the bodies of the dead . 
" </s> </s> = = = Public reaction = = = </s> </s> 
The public reaction to the killings was generally 
positive . The Times called the actions " a most 
appalling and appalling act " and the Daily Mail 
called for the police to be withdrawn .

MLE (baseline): Sir Edward Cave , the Director 
of the Public Prosecutions , was quoted as saying 
that Cave had " no idea what the truth was , and 
that the truth was not the truth. But what the truth 
was , and that the truth was not the truth . But 
what the truth was , and that the truth was not the 
truth . But what the truth was , and that the truth 
was not the truth . </s> But what the truth was , 
and that the truth was not the truth .



Experiments of Open-ended Generations (Greedy Decoding)

• MAUVE (Pillutla et al., 2021): MAVE is automatic metric to measure how close model generated-text is 
to human language

• The large, the better
• Repetition: Portion of duplicate 4-grams/sentences in generated sequences

• The closer to human, the better

DITTO achieve the highest MAUVE with lowest perplexity and highest accuracy.



Experiments of Open-ended Generations (Stochastic Decoding)

DITTO is compatible with different decoding strategies.



Experiments of Open-ended Generations (Self-reinforcement Effect)

• Other methods: cannot solve self-reinforcement effect
• DITTO: overcome the self-reinforcement effect



Experiments of Abstractive Summarization 

DITTO outperforms other methods with a large margin on summarization tasks.



Comments from NeurlPS Reviewers

“The paper tackles a core challenge in NLG. The ‘loop’ of the paper is 
complete and convincing.”

- NeurlPS reviewer 95eQ

“I believe that this general method provides a significant contribution for 
future work beyond this specific use case: using an external set of negative 
samples which are easy to form and optimize.”

- NeurlPS reviewer HDLP

“Though the community is aware of such problems, this is the first time I see 
such an analysis systematically showing the empirical results.”

- NeurlPS reviewer tE1F
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Future Work

• Why language models have “self-reinforcement effect” ?
• Model embedding
• Model architecture
• Intrinsic characteristics of language

• High-quality negative datas

• Semantic repetitions



Thanks!


