Masked Prediction Task a parameter identifiability view

Bingbin Liu, Daniel Hsu, Pradeep Ravikumar, Andrej Risteski

Masked Prediction

Task: train a model by predicting the missing part of the input.

- Empirically successful: good features for downstream tasks.
- NLP: Word2vec [Milokov et al. 13], BERT [Devlin et al. 16]
- Vision: Context Encoder [Pathak et al. 16], MAE [He et al. 21]
- Theoretically studied [Lee et al. 21, Wei et al. 21]

Evaluation metrics

BERT [Devlin et al. 16]

MAE [He et al. 21]

- Downstream performance - unclear which downstream tasks to use.
- Parameter identifiabilility: a natural quality measure; e.g. common in graphical models.

Masked Prediction - parameter identifiability

Setup: sequential data generated by a latent-variable model with known parametric form.

HMM: discrete latents $\left\{h_{t}\right\}$, discrete or continuous observables $\left\{x_{t}\right\}$.

$$
P\left(h_{t+1}=i \mid h_{t}=j\right)=T_{i j}, \quad \begin{cases}P\left(x_{t}=i \mid h_{t}=j\right)=o_{i j}, & \text { (discrete case) } \\ P\left(x_{t}=x \mid h_{t}=j\right) \propto \exp \left(-\frac{\left\|x-\mu_{i}\right\|^{2}}{2}\right) .\end{cases}
$$

Identifiability: when can we read off the parameters from an optimal predictor with the correct form?

Identifiability

Are the HMM parameters identifiable from an optimal predictor?

A masked prediction task is identifiable, if for two HMMs with $(0, T)$ and (\tilde{O}, \tilde{T}), matching the predictor means $O=\tilde{O} \Pi, T=\Pi^{\top} \tilde{T} \Pi$ for some permutation matrix Π.
e.g. discrete case, pairwise prediction:
$[\phi(x)]_{j}$ (posterior distr on h given x)

$$
\begin{aligned}
f^{2 \mid 1}(x)=\mathbb{E}\left[x_{2} \mid x_{1}=x\right] & =\sum_{i \in[k]} \sum_{j \in[k]} o_{i} T_{i j} \frac{o_{x, j}}{\sum_{l \in[k]} o_{x, l}} \\
& =\sum_{i \in[k]} \sum_{j \in[k]} \tilde{o}_{i} \tilde{T}_{i j} \frac{\tilde{o}_{x, j}}{\sum_{l \in[k]} \tilde{o}_{x, l}}=\tilde{f}^{2 \mid 1}(x)
\end{aligned}
$$

Results overview

Are the HMM parameters identifiable from an optimal predictor - Task \& model dependent.

Identifiable: matching the predictor $\rightarrow 0=\tilde{0} \Pi, T=\Pi^{\top} \tilde{T} \Pi$ for some permutation Π.

Discrete case

Pairwise prediction: non-identifiable due to rotation.
(Thm 4) There exist parameters \tilde{O}, O such that $\tilde{O} \neq O$ (up to permutation), yet the predictors for $x_{2}\left|x_{1}, x_{1}\right| x_{2}, x_{3}\left|x_{1}, x_{1}\right| x_{3}$ are the same.

Triplet prediction: identifiable due to the uniqueness of tensor decomposition (Kruskal's theorem).
(Thm 5) O, T are identifiable from the predictor for $x_{t_{2}} \otimes x_{t_{3}} \mid x_{t_{1}}$, for t_{1}, t_{2}, t_{3} being any permutation of $\{1,2,3\}$.

Continuous case (conditionally Gaussian)

```
transition matrix T \in 政就
means M:= [\mp@subsup{\mu}{1}{},\ldots,\mp@subsup{\mu}{k}{}]\in\mp@subsup{\mathbb{R}}{}{d\timesk}
```

Pairwise prediction: identifiable:
(Thm 3) M, T are identifiable from the predictor for $x_{2} \mid x_{1}$.

Intuition: the nonlinearity gives a more informative posterior $\boldsymbol{\phi}$ (over h, given x).
(Lem 1) For 2 parameters M, \widetilde{M}, if $\phi=\tilde{\phi}$, then

- $\widetilde{M}=M:=\left[\mu_{1}, \ldots, \mu_{k}\right]$,
- or $\widetilde{M}=H M$, where H is a Householder transformation.

Contributions

Q: when can we read off the parameters from an optimal predictor with the correct form? A: highly specific to the task \& model:

- Open: condition on more tokens? robustness / sample complexity? More general families?

