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Masked Prediction

Task: train a model by predicting the missing part of the input.

• Empirically successful: good features for downstream tasks.
• NLP: Word2vec [Milokov et al. 13], BERT [Devlin et al. 16]

• Vision: Context Encoder [Pathak et al.16], MAE [He et al. 21]

• Theoretically studied [Lee et al. 21, Wei et al. 21]

Evaluation metrics

• Downstream performance – unclear which downstream tasks to use.

• Parameter identifiability: a natural quality measure; e.g. common in graphical models.

MAE [He et al. 21]

BERT [Devlin et al. 16]

2



Masked Prediction – parameter identifiability

Identifiability: when can we read off the parameters from an optimal 
predictor with the correct form?

Setup: sequential data generated by a latent-variable model with known parametric form.

HMM: discrete latents {ℎ!}, discrete or continuous observables {𝑥!}.

𝑃 ℎ!"# = 𝑖 ℎ! = 𝑗 = 𝑇$%,
𝑃 𝑥! = 𝑖 ℎ! = 𝑗 = 𝑂$%,

𝑃 𝑥! = 𝑥 ℎ! = 𝑗 ∝ exp −
||𝑥 − 𝜇$||&
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Identifiability

Are the HMM parameters identifiable from an optimal predictor?

A masked prediction task is identifiable, if for two HMMs with (O, T) and ( 9𝑂, 9𝑇) , 

matching the predictor means 𝑂 = 9𝑂Π, 𝑇 = Π' 9𝑇Π for some permutation matrix Π .

e.g. discrete case, pairwise prediction:
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Results overview

Are the HMM parameters identifiable from an optimal predictor – Task & model dependent.

HMM

(discrete) 

G-HMM

(cond Gaussian)

𝑥( | 𝑥) 𝑥(⊗𝑥)| 𝑥*

✅

✅

✅

❌

Tensor 
decomposition

rotation problem (matrix)

more informative posterior

Identifiable: matching the predictor → 𝑂 = 9𝑂Π, 𝑇 = Π' 9𝑇Π for some permutation Π .
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Discrete case

(Thm 4) There exist parameters 9𝑂, 𝑂 such that 9𝑂 ≠ 𝑂 (up to permutation), yet 

the predictors for 𝑥& 𝑥#, 𝑥# 𝑥&, 𝑥0 𝑥#, 𝑥# 𝑥0 are the same.

Pairwise prediction: non-identifiable due to rotation.

Triplet prediction: identifiable due to the uniqueness of tensor decomposition (Kruskal’s theorem).

(Thm 5) 𝑂, 𝑇 are identifiable from the predictor for 𝑥!! ⊗𝑥!" | 𝑥!# , for 𝑡#, 𝑡&, 𝑡0
being any permutation of {1,2,3}.

transition matrix 𝑇 ∈ ℝ" ×"
emission matrix 𝑂 ∈ ℝ$ ×"
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Continuous case (conditionally Gaussian)

Pairwise prediction: identifiable:

transition matrix 𝑇 ∈ ℝ" ×"
means 𝑀 ≔ 𝜇%, … , 𝜇" ∈ ℝ$ ×"

(Lem 1) For 2 parameters 𝑀, H𝑀, if 𝜙 = 9𝜙,	then
• H𝑀 = 𝑀 ≔ [𝜇#, … , 𝜇+],
• or H𝑀 = 𝐻𝑀, where 𝐻 is a Householder transformation.

(Thm 3) 𝑀,𝑇 are identifiable from the predictor for 𝑥& | 𝑥#.

Intuition: the nonlinearity gives a more informative posterior 𝜙 (over ℎ, given 𝑥).
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Contributions

Q: when can we read off the parameters from an optimal predictor with the correct form?

A: highly specific to the task & model:

HMM

(discrete) 

G-HMM

(cond Gaussian)

𝑥" | 𝑥# 𝑥" ⊗𝑥#| 𝑥$

✅

✅

✅

❌

Tensor 
decomposition

rotation problem (matrix)

more informative posterior

• Open: condition on more tokens? robustness / sample complexity? More general families?
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