Efficient Sampling on Riemannian Manifolds via Langevin MCMC

Xiang Cheng, Jingzhao Zhang, Suvrit Sra

Sampling over Riemannian Manifolds

Given manifold (*M*, *g*), sample from $dp(x) = e^{-U(x)} dvol_g(x)$

- $U(x): M \to \mathbb{R}$ is a potential function (e.g. negative-log-posterior)
- $dvol_g(x)$ is manifold volume, in coordinates, it is $\sqrt{\det(g)}$.

The Riemannian Langevin Diffusion (RLD):

$$dx(t) = -\operatorname{grad} U(x(t))dt + dB_t^g$$

- grad U denotes the manifold gradient, and dB_t^g denotes the manifold Brownian motion
- Has invariant distribution $e^{-U(x)}dvol_g(x)$

Sampling over Riemannian Manifolds

Given manifold (*M*, *g*), sample from $dp(x) = e^{-U(x)} dvol_g(x)$

- $U(x): M \to \mathbb{R}$ is a potential function (e.g. negative-log-posterior)
- $dvol_g(x)$ is manifold volume, in coordinates, it is $\sqrt{\det(g)}$.

The Riemannian Langevin Diffusion (RLD):

$$dx(t) = -\operatorname{grad} U(x(t))dt + dB_t^g$$

- grad U denotes the manifold gradient, and dB_t^g denotes the manifold Brownian motion
- Has invariant distribution $e^{-U(x)}dvol_g(x)$

Riemannian Langevin MCMC

Based on the geometric Euler Murayama Discretization of RLD:

$$x_{(k+1)\delta} = Exp_{x_{k\delta}} \left(-\delta \operatorname{grad} U(x_{k\delta}) + \sqrt{\delta}\xi_k \right)$$

where ξ_k is "standard Gaussian" wrt an orthonormal basis at $T_{\chi_k}M$

Exponential maps can be approximated to high accuracy efficiently

<u>RLMCMC can be much faster than Euclidean Langevin MCMC</u>

- Given: unobserved ($\mu = 0, \sigma = 10$), observe samples $x_1 \dots x_{100} \sim \mathcal{N}(\mu, \sigma^2)$.
- Task: sample from the posterior distribution $p(\mu, \sigma | x_1 \dots x_{100}) \propto \exp\left(\sum_i \frac{\|x_i \mu\|^2}{2\sigma^2} N\log\sigma\right)$

• Fisher-Rao manifold:
$$\begin{pmatrix} M = \mathbb{R} \times \mathbb{R}^+, g(\mu, \sigma) = \begin{bmatrix} N/\sigma^2 & 0\\ 0 & 2N/\sigma^2 \end{bmatrix} \end{pmatrix}$$

Key Assumptions

- Assume (*M*, *g*) satisfies
 - Ricci curvature lower bounded by $-L_{ric}$
 - Absolute value of sectional curvature upper bounded by L_{sec}
- Assume –*U* satisfies
 - (gradient Lipschitz) $\operatorname{Hess}(U)[v, v] \leq L_U ||v||^2$, for all $x \in M, v \in T_x M$
 - (distant dissipativity) $\langle \Gamma_x^y \text{grad } U(y) \text{grad } U(x), \text{Exp}_x^{-1}(y) \rangle \ge m \operatorname{dist}(x, y)^2$, for all $\operatorname{dist}(x, y) > R$ and some $m > -L_{Ric}$

Key Assumptions

- Assume (*M*, *g*) satisfies
 - Ricci curvature lower bounded by $-L_{ric}$
 - Absolute value of sectional curvature upper bounded by L_{sec}
- Assume –*U* satisfies
 - (gradient Lipschitz) $\operatorname{Hess}(U)[v, v] \leq L_U ||v||^2$, for all $x \in M, v \in T_x M$
 - (distant dissipativity) $\langle \Gamma_x^y \text{grad } U(y) \text{grad } U(x), \text{Exp}_x^{-1}(y) \rangle \ge m \operatorname{dist}(x, y)^2$, for all $\operatorname{dist}(x, y) > R$ and some $m > -L_{Ric}$

Key Assumptions

- Assume (*M*, *g*) satisfies
 - Ricci curvature lower bounded by $-L_{ric}$
 - Absolute value of sectional curvature upper bounded by L_{sec}
- Assume -U satisfies
 - (gradient Lipschitz) $\operatorname{Hess}(U)[v, v] \leq L_U ||v||^2$, for all $x \in M, v \in T_x M$
 - (distant dissipativity) $\langle \Gamma_x^y \text{grad } U(y) \text{grad } U(x), \text{Exp}_x^{-1}(y) \rangle \ge m \operatorname{dist}(x, y)^2$, for all $\operatorname{dist}(x, y) > R$ and some $m > -L_{Ric}$

Main Theoretical Result

- Assume (*M*, *g*) satisfies
 - Ricci curvature lower bounded by $-L_{ric}$, for some $L_{Ric} > 0$
 - Absolute value of sectional curvature upper bounded by L_{sec}
- Assume -U satisfies
 - (gradient Lipschitz) $\operatorname{Hess}(U)[v, v] \leq L_U ||v||^2$, for all $x \in M, v \in T_x M$
 - (distant dissipativity) $\langle \Gamma_x^y \text{grad } U(y) \text{grad } U(x), \text{Exp}_x^{-1}(y) \rangle \ge m \operatorname{dist}(x, y)^2$, for all $\operatorname{dist}(x, y) > R$ and some $m > L_{Ric}$

<u>Theorem 1</u>

Let $x_{k\delta}$ be iterates of RLMCMC, and let y(t) denote RLD, then $\mathbb{E}\left[\operatorname{dist}(x_{K\delta}, y(K\delta))\right] \leq \epsilon$

for $K = \text{poly}\left(e^{(L_U + L_{ric})R^2}, L_{sec}, L_U, d, \frac{1}{m - L_{Ric}}\right) \cdot 1/\epsilon^2$