Accelerated Projected Gradient Algorithms for Sparsity Constrained Optimization Problems

Jan Harold Alcantara and Ching-pei Lee Academia Sinica

NeurIPS 2022

Problem Setup

We consider

$$\min_{w \in A_s} f(w) \tag{P}$$

where

- f has L-Lipschitz continuous gradient
- $\bullet A_s \coloneqq \{w \in \mathrm{IR}^n : \|w\|_0 \le s\}$
- f is lower-bounded on A_s
- Known as: feature selection, best subset selection, etc.

Our approach

Revisit projected gradient (PG) algorithm

$$w^{k+1} \in T^{\lambda}_{\mathrm{PG}}(w^k) \coloneqq P_{\mathcal{A}_s}(w^k - \lambda \nabla f(w^k)) \tag{PG}$$

with $\lambda \in (0, 1/L)$

- Two acceleration strategies
 - 1 Acceleration by same-subspace extrapolation
 - 2 Switching to smooth optimization (Newton) when the right subspace is identified

Strategy 1: Acceleration by same-subspace extrapolation

Decompose A_s as

$$\begin{aligned} &A_s = \bigcup_{J \in \mathcal{J}_s} A_J, \quad A_J \coloneqq \operatorname{span} \{ e_j : j \in J \}, \\ &\mathcal{J}_s \coloneqq \{ J \subseteq \{1, 2, \dots, n\} : |J| = s \}, \end{aligned}$$

- Iterates are confined on A_s
- If w^{k-1} and w^k belong to the same A_J for some J, we conduct extrapolation along

$$d^k \coloneqq w^k - w^{k-1}.$$

Otherwise, skip extrapolation.

Find suitable $t_k > 0$ and set

$$z^k \coloneqq w^k + t_k d^k$$
 (Extrapolation)
 $w^{k+1} \in T^{\lambda}_{PG}(z^k).$ (ProjStep)

Global convergence

Definition

The KL condition holds at w^* if there exists neighborhood $U \subset \mathbb{R}^n$ of w^* , $\theta \in [0, 1]$, and $\kappa > 0$ such that for every $J \in \mathcal{I}_{w^*}$,

$$(f(w) - f(w^*))^{\theta} \le \kappa \| (\nabla f(w))_J \|, \quad \forall w \in A_J \cap U.$$
 (KL

Theorem

(**Notation:** n_k denotes the number of successful extrapolation steps in the first k iterations.)

Suppose that there is an accumulation point w^* of the iterates at which (KL) holds. Then $w^k \to w^*$. Moreover, the following rates hold:

(a) If
$$\theta \in (1/2, 1)$$
: $f(w^k) - f(w^*) = O((k + n_k)^{-1/(2\theta - 1)})$.

(b) If
$$\theta \in (0, 1/2]$$
: $f(w^{\kappa}) - f(w^{*}) = O(\exp(-(k + n_{k})))$.

(c) If $\theta = 0$, or $\theta \in [0, 1/2]$ and f is convex: there is $k_0 \ge 0$ such that $f(w^k) = f(w^*)$ for all $k \ge k_0$.

Strategy 2: Subspace identification and Smooth Optimization

Theorem (Subspace identification) There exists $N \in \mathbb{N}$ such that $\{w^k\}_{k=N}^{\infty} \subseteq \bigcup_{J \in \mathcal{I}_{w^*}} A_J, \qquad \mathcal{I}_{w^*} \coloneqq \{J \in \mathcal{J}_s : w^* \in A_J\}.$ (*) whenever $w^k \to w^*$. In particular, (a) if $T_{PG}^{\lambda}(w^*)$ is a singleton for an accumulation point w^* of $\{w^k\}$, then w^* is a local minimum, $w^k \to w^*$, and (*) holds. (b) (*) holds for Algorithm 1 under the hypotheses of the previous theorem.

- We switch to the truncated Newton method after the subspace A_J becomes fixed for multiple iterations
- This strategy provably leads to superlinear or even quadratic convergence

Experiments

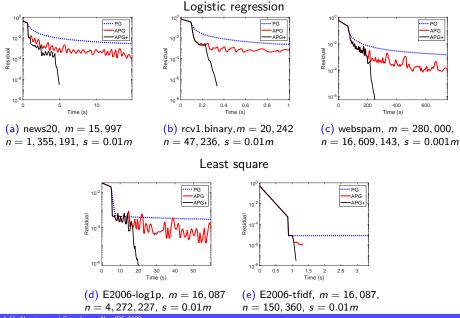
- Loss functions: Least squares and logistic loss
- Datasets: Used public datasets with #instances $\ll \#$ features
- Stopping criterion

$$\mathsf{Residual}(w) \coloneqq \frac{\|w - P_{\mathcal{A}_s}(w - \lambda \nabla f(w))\|}{(1 + \|w\| + \lambda \|\nabla f(w)\|)} < \hat{\epsilon}$$
(1)

with $\hat{\epsilon} = 10^{-6}$.

- Compare:
 - PG
 - APG: Our same-subspace extrapolation acceleration
 - APG+: APG plus the smooth Newton part

m = #instances, n = #features, s = #allowed_nonzeros



Thank you for listening!