Communication-efficient distributed eigenspace estimation with arbitrary node failures

Vasilis Charisopoulos (Cornell ORIE)

Joint work with Anil Damle (Cornell CS)

NeurIPS 2022

Problem setting

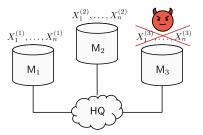
Motivating example: principal component analysis (PCA).

- Given samples $X_1, \ldots, X_n \in \mathbb{R}^d$, reduce dimension to $r \ll d$.
- Solution: top-r eigenspace of empirical covariance matrix:

$$\Sigma_n := \frac{1}{n} \sum_{j=1}^n X_j X_j^{\mathsf{T}} = V \Lambda V^{\mathsf{T}} + V_{\perp} \Lambda_{\perp} V_{\perp}^{\mathsf{T}}, \qquad V \in O(d, r).$$

Challenges and desiderata:

- 1. What if data are **distributed**? (communication-efficiency)
- 2. What if some machines are compromised? (robustness)



Problem setting

General setting and assumptions:

• **Unknown** symmetric matrix $A \in \mathbb{R}^{d \times d}$ with decomposition

$$A = V\Lambda V^{\mathsf{T}} + V_{\perp}\Lambda_{\perp}V_{\perp}^{\mathsf{T}}, \quad V \in O(d, r).$$

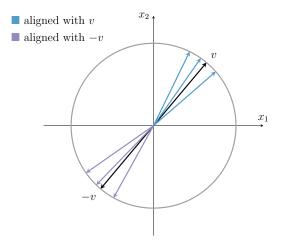
- **Eigengap**: we have $\delta_r := \lambda_r(A) \lambda_{r+1}(A) > 0$.
- Local errors: machine i observes symmetric $A^{(i)} \in \mathbb{R}^{d \times d}$ such that

$$\left\|A^{(i)}-A\right\|_2 \leq \frac{\delta_r}{8}, \quad i=1,\ldots,m, \quad (m:= \text{number of machines.})$$

Quality of approximation measured in ℓ_2 -subspace distance:

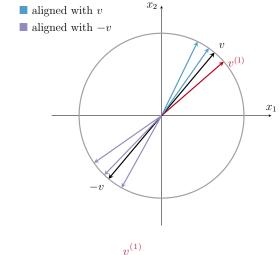
dist₂(V,U) :=
$$\|(I - VV^{\mathsf{T}})U\|_{2} = \|(I - UU^{\mathsf{T}})V\|_{2}$$
.

Problem (for r = 1): $v^{(i)}$ only defined up to sign.



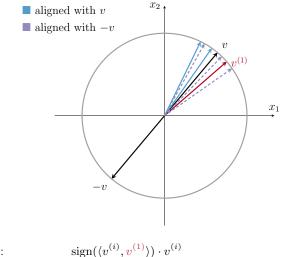
Question: can we fix the sign ambiguity?

Problem (for r = 1): $v^{(i)}$ only defined up to sign.



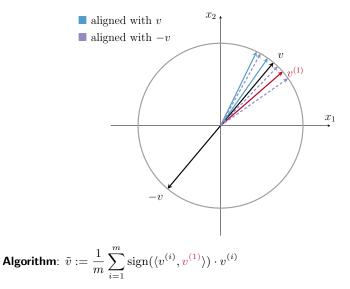
Algorithm:

Problem (for r = 1): $v^{(i)}$ only defined up to sign.



Algorithm:

Problem (for r = 1): $v^{(i)}$ only defined up to sign.



Proposed method

Algorithm (without node failures): average aligned eigenvectors of $A^{(i)}$.

Algorithm Procrustes Fixing

 $\begin{array}{ll} \text{Input: local eigenvector matrices } V^{(i)} \in O(d,r), \ i=1,\ldots,m, \\ \text{for } i=1,\ldots,m \text{ do} \\ Z_i:= \mathop{\mathrm{argmin}}_{U \in O(r)} \left\| V^{(i)}U - V^{(1)} \right\|_{\mathrm{F}} & \vartriangleright V^{(1)} \text{ acts as "reference"} \\ \tilde{V}^{(i)}:=V^{(i)}Z_i & \vartriangleright \text{Procrustes alignment} \\ \text{return } \frac{1}{m}\sum_{i=1}^m \tilde{V}^{(i)} \end{array}$

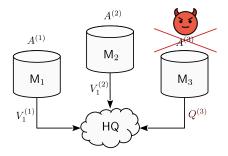
- Without corruptions, achieves approximation error ¹:

$$\operatorname{dist}_{2}\left(\frac{1}{m}\sum_{i=1}^{m}\tilde{V}^{(i)}, V\right) \lesssim \frac{1}{m}\sum_{i=1}^{m}\left(\frac{\|A^{(i)} - A\|_{2}}{\delta}\right)^{2} + \frac{1}{\delta}\left\|\frac{1}{m}\sum_{i=1}^{m}A^{(i)} - A\right\|_{2}$$

- Key issue: not robust to nodes that may respond adversarially.

¹C., Benson & Damle, 2021

Node failures



Corruption model: unknown index set $\mathcal{I}_{bad} \subset [m]$ such that:

- $|\mathcal{I}_{\mathsf{bad}}| \leq \alpha m$, for $\alpha \in (0, 1/2)$.
- All nodes $i \in \mathcal{I}_{bad}$ return arbitrary, but structurally valid $Q^{(i)} \in O(d, r)$.

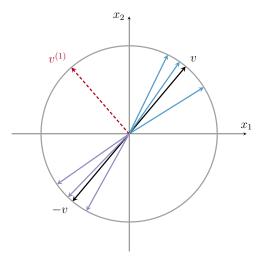
Sources of corruption:

- *Silent / soft* errors (e.g., insufficient eigensolver tolerance);
- Outliers / corrupted data (e.g., corrupted data source in some machines);
- Adversarial responses.

A robust algorithm

Strategy: "robustify" Procrustes-fixing algorithm.

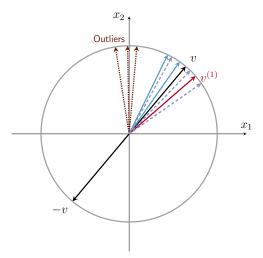
Challenge I: reference solution could be chosen among outliers.



A robust algorithm

Strategy: "robustify" Procrustes-fixing algorithm.

Challenge II: Even with "good" reference, we could average over outliers.



A robust algorithm

Strategy: "robustify" Procrustes-fixing algorithm.

Algorithm Robust Procrustes fixing

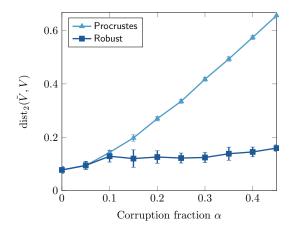
- 1: Input: responses $\{\widehat{V}^{(i)} \mid i \in [m]\}$, corruption fraction α . 2: $V_{\text{ref}} := \text{RobustReferenceEstimator}(\{\widehat{V}^{(i)}\}_{i=1}^{m})$
- 2: $V_{\text{ref}} := \text{RobustReferenceEstimator}(\{V^{(i)}\}_{i=1}^{m})$ 3: $\{\widetilde{V}^{(i)}\}_{i=1}^{m} := \text{ProcrustesFixing}(\{\widehat{V}^{(i)}\}_{i=1}^{m}, V_{\text{ref}})$ 4: $\widetilde{V} := \text{RobustMeanEstimation}(\{\widetilde{V}^{(i)}\}_{i=1}^{m}, \alpha).$

Key differences:

- 1. Instead of picking $\widehat{V}^{(1)}$ as reference, choose it robustly.
- 2. Instead of averaging Procrustes-fixed responses, compute their robust mean.

Experiment

Setup: distributed PCA with $\lfloor \alpha m \rfloor$ responses replaced by a $V_{adv} \in O(d, r)$.



★ "Baseline" solution almost orthogonal to V as $\alpha \rightarrow 1/2$. ✓ Robust solution: natural breakdown point at $\alpha = 1/2$.

Thank you!

Full paper: arXiv:2206.00127