Communication-efficient distributed eigenspace estimation with arbitrary node failures

Vasilis Charisopoulos (Cornell ORIE)
Joint work with Anil Damle (Cornell CS)

NeurIPS 2022

Problem setting

Motivating example: principal component analysis (PCA).

- Given samples $X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}$, reduce dimension to $r \ll d$.
- Solution: top- r eigenspace of empirical covariance matrix:

$$
\Sigma_{n}:=\frac{1}{n} \sum_{j=1}^{n} X_{j} X_{j}^{\top}=V \Lambda V^{\top}+V_{\perp} \Lambda_{\perp} V_{\perp}^{\top}, \quad V \in O(d, r)
$$

Challenges and desiderata:

1. What if data are distributed? (communication-efficiency)
2. What if some machines are compromised? (robustness)

Problem setting

General setting and assumptions:

- Unknown symmetric matrix $A \in \mathbb{R}^{d \times d}$ with decomposition

$$
A=V \Lambda V^{\top}+V_{\perp} \Lambda_{\perp} V_{\perp}^{\top}, \quad V \in O(d, r)
$$

- Eigengap: we have $\delta_{r}:=\lambda_{r}(A)-\lambda_{r+1}(A)>0$.
- Local errors: machine i observes symmetric $A^{(i)} \in \mathbb{R}^{d \times d}$ such that

$$
\left\|A^{(i)}-A\right\|_{2} \leq \frac{\delta_{r}}{8}, \quad i=1, \ldots, m, \quad(m:=\text { number of machines. })
$$

Quality of approximation measured in ℓ_{2}-subspace distance:

$$
\operatorname{dist}_{2}(V, U):=\left\|\left(I-V V^{\top}\right) U\right\|_{2}=\left\|\left(I-U U^{\top}\right) V\right\|_{2}
$$

Challenge: averaging local solutions with symmetries
Problem (for $r=1$): $v^{(i)}$ only defined up to sign.

Question: can we fix the sign ambiguity?

Challenge: averaging local solutions with symmetries
Problem (for $r=1$): $v^{(i)}$ only defined up to sign.

Algorithm:

Challenge: averaging local solutions with symmetries
Problem (for $r=1$): $v^{(i)}$ only defined up to sign.

Algorithm:

$$
\operatorname{sign}\left(\left\langle v^{(i)}, v^{(1)}\right\rangle\right) \cdot v^{(i)}
$$

Challenge: averaging local solutions with symmetries
Problem (for $r=1$): $v^{(i)}$ only defined up to sign.

Algorithm: $\tilde{v}:=\frac{1}{m} \sum_{i=1}^{m} \operatorname{sign}\left(\left\langle v^{(i)}, v^{(1)}\right\rangle\right) \cdot v^{(i)}$

Proposed method

Algorithm (without node failures): average aligned eigenvectors of $A^{(i)}$.

Algorithm Procrustes Fixing

Input: local eigenvector matrices $V^{(i)} \in O(d, r), i=1, \ldots, m$,

for $i=1, \ldots, m$ do

$Z_{i}:=\operatorname{argmin}_{U \in O(r)}\left\|V^{(i)} U-V^{(1)}\right\|_{\mathrm{F}}$
$\triangleright V^{(1)}$ acts as "reference"

$$
\tilde{V}^{(i)}:=V^{(i)} Z_{i}
$$

$$
\triangleright \text { Procrustes alignment }
$$

return $\frac{1}{m} \sum_{i=1}^{m} \tilde{V}^{(i)}$

- Without corruptions, achieves approximation error ${ }^{1}$:

$$
\operatorname{dist}_{2}\left(\frac{1}{m} \sum_{i=1}^{m} \tilde{V}^{(i)}, V\right) \lesssim \frac{1}{m} \sum_{i=1}^{m}\left(\frac{\left\|A^{(i)}-A\right\|_{2}}{\delta}\right)^{2}+\frac{1}{\delta}\left\|\frac{1}{m} \sum_{i=1}^{m} A^{(i)}-A\right\|_{2}
$$

- Key issue: not robust to nodes that may respond adversarially.

[^0]
Node failures

Corruption model: unknown index set $\mathcal{I}_{\text {bad }} \subset[m]$ such that:

- $\left|\mathcal{I}_{\text {bad }}\right| \leq \alpha m$, for $\alpha \in(0,1 / 2)$.
- All nodes $i \in \mathcal{I}_{\text {bad }}$ return arbitrary, but structurally valid $Q^{(i)} \in O(d, r)$.

Sources of corruption:

- Silent / soft errors (e.g., insufficient eigensolver tolerance);
- Outliers / corrupted data (e.g., corrupted data source in some machines);
- Adversarial responses.

A robust algorithm

Strategy: "robustify" Procrustes-fixing algorithm.
Challenge I: reference solution could be chosen among outliers.

A robust algorithm

Strategy: "robustify" Procrustes-fixing algorithm.
Challenge II: Even with "good" reference, we could average over outliers.

A robust algorithm

Strategy: "robustify" Procrustes-fixing algorithm.

```
Algorithm Robust Procrustes fixing
    1: Input: responses \(\left\{\widehat{V}^{(i)} \mid i \in[m]\right\}\), corruption fraction \(\alpha\).
    2: \(V_{\text {ref }}:=\) RobustReferenceEstimator \(\left(\left\{\widehat{V}^{(i)}\right\}_{i=1}^{m}\right)\)
    3: \(\left\{\widetilde{V}^{(i)}\right\}_{i=1}^{m}\) := ProcrustesFixing \(\left(\left\{\widehat{V}^{(i)}\right\}_{i=1}^{m}, V_{\text {ref }}\right)\)
    4: \(\tilde{V}:=\) RobustMeanEstimation \(\left(\left\{\widetilde{V}^{(i)}\right\}_{i=1}^{m}, \alpha\right)\).
```


Key differences:

1. Instead of picking $\widehat{V}^{(1)}$ as reference, choose it robustly.
2. Instead of averaging Procrustes-fixed responses, compute their robust mean.

Experiment

Setup: distributed PCA with $\lfloor\alpha m\rfloor$ responses replaced by a $V_{\mathrm{adv}} \in O(d, r)$.

\boldsymbol{x} "Baseline" solution almost orthogonal to V as $\alpha \rightarrow 1 / 2$.
\checkmark Robust solution: natural breakdown point at $\alpha=1 / 2$.

Thank you!

Full paper: arXiv:2206.00127

[^0]: ${ }^{1}$ C., Benson \& Damle, 2021

