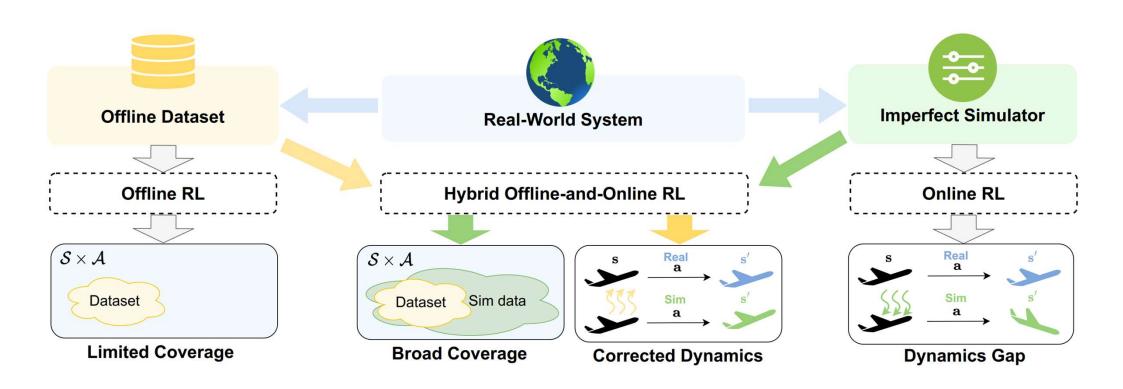


When to Trust Your Simulator: Dynamics-Aware <u>Hybrid Offline-and-Online Reinforcement Learning</u>

Haoyi Niu, Shubham Sharma, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, Xianyuan Zhan



Hybrid Offline-and-Online RL (H2O)

<u>Hybrid Offline-and-Online RL (H2O)</u>

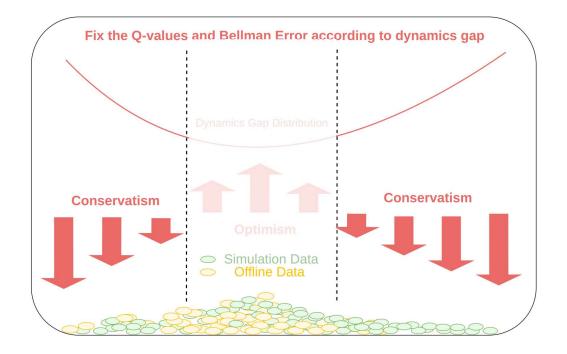
Dynamics-Aware Policy Evaluation:

$$\min_{Q} \beta \left(\log \sum_{\mathbf{s}, \mathbf{a}} \omega(\mathbf{s}, \mathbf{a}) \exp \left(Q(\mathbf{s}, \mathbf{a}) \right) - \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right) + \widetilde{\mathcal{E}} \left(Q, \hat{\mathcal{B}}^{\pi} \hat{Q} \right)$$

Minimize the dynamics-gap weighted soft-maximum of Q values: Push down Q values on high dynamics-gap samples Maximize Q values on data: Pull up Q values on real offline data samples

$$\begin{split} \omega(\mathbf{s}, \mathbf{a}) &= u(\mathbf{s}, \mathbf{a}) / \sum_{\tilde{\mathbf{s}}, \tilde{\mathbf{a}}} u(\tilde{\mathbf{s}}, \tilde{\mathbf{a}}) \\ u(\mathbf{s}, \mathbf{a}) &:= D_{KL} \left(P_{\widehat{\mathcal{M}}} \| P_{\mathcal{M}} \right) \\ \approx \sum_{\mathbf{s}'_i \sim P_{\widehat{\mathcal{M}}} \left(\mathbf{s}'_i | \mathbf{s}, \mathbf{a} \right)}^N \log \frac{P_{\widehat{\mathcal{M}}} \left(\mathbf{s}'_i | \mathbf{s}, \mathbf{a} \right)}{P_{\mathcal{M}} \left(\mathbf{s}'_i | \mathbf{s}, \mathbf{a} \right)} \\ &= \sum_{\mathbf{s}'_i \sim P_{\widehat{\mathcal{M}}} \left(\mathbf{s}'_i | \mathbf{s}, \mathbf{a} \right)}^N \log \left[\frac{1 - p \left(\text{real} | \mathbf{s}, \mathbf{a}, \mathbf{s}' \right)}{p \left(\text{real} | \mathbf{s}, \mathbf{a}, \mathbf{s}' \right)} / \frac{1 - p \left(\text{real} | \mathbf{s}, \mathbf{a} \right)}{p \left(\text{real} | \mathbf{s}, \mathbf{a}, \mathbf{s}' \right)} \right] \\ &= \sum_{\mathbf{s}'_i \sim P_{\widehat{\mathcal{M}}} \left(\mathbf{s}'_i | \mathbf{s}, \mathbf{a} \right)}^N \log \left[\frac{1 - D_{sas} \left(\mathbf{s}, \mathbf{a}, \mathbf{s}' \right)}{D_{sas} \left(\mathbf{s}, \mathbf{a}, \mathbf{s}' \right)} / \frac{1 - D_{sa} \left(\mathbf{s}, \mathbf{a} \right)}{D_{sa} \left(\mathbf{s}, \mathbf{a} \right)} \right] \end{split}$$

$$\widetilde{\mathcal{E}}\left(Q,\hat{\mathcal{B}}^{\pi}\hat{Q}\right) = \frac{1}{2}\mathbb{E}_{\mathbf{s},\mathbf{a},\mathbf{s}'\sim\mathcal{D}}\left[\left(Q-\hat{\mathcal{B}}^{\pi}\hat{Q}\right)(\mathbf{s},\mathbf{a})\right]^{2} + \frac{1}{2}\mathbb{E}_{\mathbf{s},\mathbf{a},\mathbf{s}'\sim B}\left[\frac{P_{\mathcal{M}}(\mathbf{s}'|\mathbf{s},\mathbf{a})}{P_{\widehat{\mathcal{M}}}(\mathbf{s}'|\mathbf{s},\mathbf{a})}\left(Q-\hat{\mathcal{B}}^{\pi}\hat{Q}\right)(\mathbf{s},\mathbf{a})\right]^{2}$$

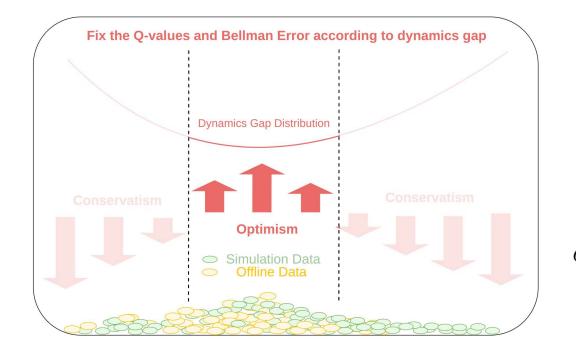

Learn on both offline data and online simulated samples

Fix Bellman error due to dynamics gap: Use dynamics ratio as an importance sampling weight

Theoretical Interpretation

$$\min_{Q} \beta \left(\log \sum_{\mathbf{s}, \mathbf{a}} \omega(\mathbf{s}, \mathbf{a}) \exp \left(Q(\mathbf{s}, \mathbf{a}) \right) - \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right) + \widetilde{\mathcal{E}} \left(Q, \hat{\mathcal{B}}^{\pi} \hat{Q} \right)$$

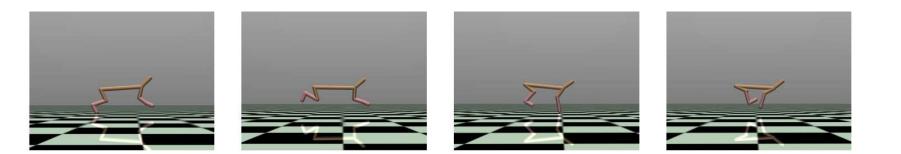
Adaptation but not Conservatism


Can be interpreted as adding an adaptive adjustment on Q-values:

$$\hat{Q}^{k+1}(\mathbf{s}, \mathbf{a}) = (\hat{\mathcal{B}}^{\pi} \hat{Q}^{k})(\mathbf{s}, \mathbf{a}) - \beta \left[\frac{\omega(\mathbf{s}, \mathbf{a}) - d_{M}^{\pi_{\mathcal{D}}}(\mathbf{s}, \mathbf{a})}{d_{M}^{\pi_{\mathcal{D}}}(\mathbf{s}, \mathbf{a}) + d_{\widehat{M}}^{\pi}(\mathbf{s}, \mathbf{a})} \right]$$

Theoretical Interpretation

$$\min_{Q} \beta \left(\log \sum_{\mathbf{s}, \mathbf{a}} \omega(\mathbf{s}, \mathbf{a}) \exp \left(Q(\mathbf{s}, \mathbf{a}) \right) - \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[Q(\mathbf{s}, \mathbf{a}) \right] \right) + \widetilde{\mathcal{E}} \left(Q, \hat{\mathcal{B}}^{\pi} \hat{Q} \right)$$

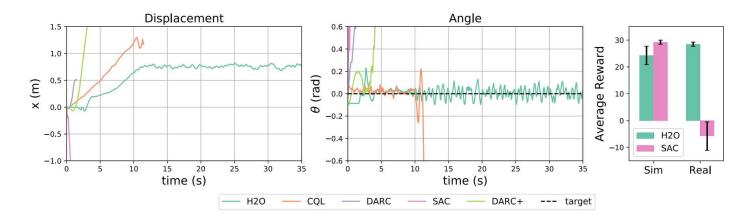

Adaptation but not Conservatism

Can be interpreted as adding an adaptive adjustment on Q-values:

$$\hat{Q}^{k+1}(\mathbf{s}, \mathbf{a}) = (\hat{\mathcal{B}}^{\pi} \hat{Q}^{k})(\mathbf{s}, \mathbf{a}) - \beta \left[\frac{\omega(\mathbf{s}, \mathbf{a}) - d_{M}^{\pi_{\mathcal{D}}}(\mathbf{s}, \mathbf{a})}{d_{M}^{\pi_{\mathcal{D}}}(\mathbf{s}, \mathbf{a}) + d_{\widehat{M}}^{\pi}(\mathbf{s}, \mathbf{a})} \right]$$

Simulation Experiments

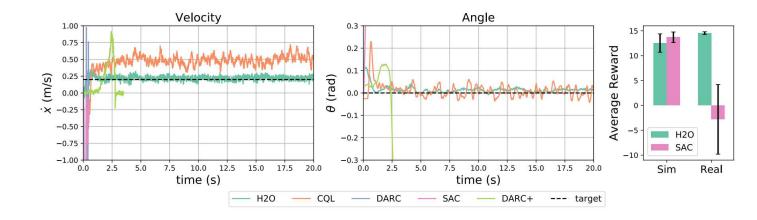
Dataset Ur	nreal Dynami	ics SAC	CQL	DARC	DARC+	H2O
Medium	Gravity	4513±513	6066 <u>+</u> 73	5011±456	5706±440	7085±416
	Friction	2684 ± 2646	6066 <u>+</u> 73	6113±104	6047±112	6848±445
	Joint Noise	4137±805	6066±73	5484±171	5314±520	7212 <u>+</u> 236
Medium Replay	Gravity	4513±513	5774 <u>±</u> 214	5105 ± 460	4958 <u>±</u> 540	6813±289
	Friction	2684±2646	5774 <u>+</u> 214	5503±263	5288 ± 100	5928 <u>+</u> 896
	Joint Noise	4137±805	5774 <u>+</u> 214	5137±225	5230±209	6747 <u>+</u> 427
Medium Expert	Gravity	4513±513	3748±892	4759±353	72±109	4707±779
	Friction	2684 ± 2646	3748±892	9038±1480	7989±3999	6745 <u>+</u> 562
	Joint Noise	4137 <u>+</u> 805	3748 <u>+</u> 892	5288±104	733±767	5280±1329

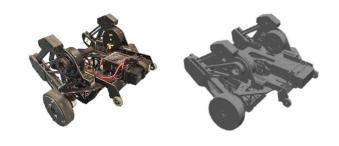

MuJoCO HalfCheetah Environment

- Offline dataset: D4RL
- Trained in simulation with unreal dynamics: Gravity x2, Friction x0.3, Joint Noise N(0,1)
- Evaluated in simulation with original dynamics: Gravity x1, Friction x1, Joint Noise: none
- Baseline: SAC (online sim), CQL (offline real),
 DARC (online cross-domain, DARC+ (online+offline))

Real-World Validation

Wheel-Legged Robot




Standing Still

Real-World Validation

Wheel-Legged Robot

Moving Straight

(c) Experimental results for standing still task Displacement Angle 1.5 30 0.4 Average Reward 1.0 20 0.2 (rad) (m) × 0.5 0.0 10 0 **Wheel-legged Robot** -0.2 0 H20 -0.5 -0.4 SAC -10 -1.0-0.6 5 10 15 20 25 30 35 10 15 20 25 30 35 Sim Real 5 0 0 time (s) time (s) (d) Experimental results for moving straight task Velocity Angle 1.00 0.3 15 0.75 0.2 Average Reward 10 0.50 0.1 (rad) (m/s) 0.25 0.0 0.00 ·× -0.25 -0.1 -0.50 -5 H20 -0.2 -0.75 SAC -10-1.00-0.3 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 10.0 12.5 15.0 17.5 20.0 7.5 Sim Real time (s) time (s) DARC SAC - DARC+ H20 CQL --- target _

Real-World Validation

Rethinking: simulation-based evaluation can be very misleading, due to the dynamics gap.

When to Trust Your Simulator: Dynamics-Aware <u>Hybrid Offline-and-Online Reinforcement Learning</u>

Haoyi Niu, Shubham Sharma, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, Xianyuan Zhan

Thanks!

https://github.com/t6-thu/H2O

https://www.youtube.com/watch?v=WRyEB6WEGc4

t6.da.thu@gmail.com