Top Two Algorithms Revisited

Marc Jourdan, Rémy Degenne, Dorian Baudry, Rianne de Heide and Émilie Kaufmann

October 17, 2022

Université de Lille

- **Goal:** Identify the item having the highest averaged return.
- Typical assumptions: Parametric (Bernoulli, Gaussian).
- ▲ Too restrictive !
- This paper: Bounded distributions.

Crop-management task:

- item = planting date
- observation = yield

Best-arm identification (BAI)

K arms, $F_i \in \mathcal{F}$ bounded distribution of arm $i \in [K]$ with mean μ_i .

Goal: identify $i^{\star} = \arg \max_{i} \mu_{i}$ with confidence $1 - \delta$.

Algorithm: at time n,

• Sequential test: if the stopping time τ_{δ} is reached, then return the candidate answer \hat{i}_n .

• Sampling rule: pull arm I_n and observe $X_n \sim F_{I_n}$.

Objective: Minimize $\mathbb{E}_{F}[\tau_{\delta}]$ for δ -correct algorithms

$$\mathbb{P}_{\boldsymbol{F}}\left[\tau_{\delta} < +\infty, \ \hat{\imath}_{\tau_{\delta}} \neq i^{\star}\right] \leq \delta \ .$$

(Garivier and Kaufmann, 2016) For all δ -correct algorithm,

$$\forall \mathbf{F} \in \mathcal{F}^{K}, \quad \liminf_{\delta \to 0} \frac{\mathbb{E}_{\mathbf{F}}[\tau_{\delta}]}{\log(1/\delta)} \ge T^{\star}(\mathbf{F}).$$

How to obtain a δ -correct sequential test ?

recommend the empirical best arm, $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$.

calibrated GLR stopping rule

$$\tau_{\delta} = \inf \left\{ n \in \mathbb{N} \mid \min_{j \neq \hat{\imath}_n} W_n(\hat{\imath}_n, j) > c(n, \delta) \right\} ,$$

where $c(n, \delta)$ is a calibrated threshold and $W_n(i, j)$ is the empirical transportation cost between arms (i, j).

Top Two sampling rule

Family of algorithms:

 \bowtie β proportion of samples to the best arm (Russo, 2016).

- 1: Choose a leader $B_n \in [K]$
- 2: Choose a challenger $C_n \in [K] \setminus \{B_n\}$
- 3: Sample B_n with probability β , else sample C_n

Theorem

Instantiating the Top Two algorithm with any pair of leader/challenger satisfying some properties yields a δ -correct algorithm which is asymptotically β -optimal for instances having distinct means.

Leader and challenger

```
How to choose the leader ?

Thompson Sampling (Russo, 2016), \arg \max_{i \in [K]} \theta_i with \theta \sim \prod_{n-1} where \prod_{n-1} is a sampler on (0, B)^K.

Empirical Best, \hat{i}_{n-1}.
```

How to choose the challenger ?

Re-Sampling (Russo, 2016), repeat $\theta \sim \prod_{n=1}$ until $B_n \notin \arg \max_{i \in [K]} \theta_i$, then $\arg \max_{i \in [K]} \theta_i$.

Transportation Cost (Shang et al., 2020), $\arg \min_{j \neq B_n} W_{n-1}(B_n, j)$.

Transportation Cost Improved,

$$\underset{j \neq B_n}{\arg\min} W_{n-1}(B_n, j) + \log(N_{n-1,j}) \, .$$

Empirical results

Crop-management task: arm = planting date / observation = yield Moderate regime, $\delta = 0.01$. Top Two algorithms with $\beta = 1/2$.

Figure: Empirical stopping time (a) on scaled DSSAT instances with their density and mean (b). Lower bound is $T^{\star}(\mathbf{F}) \log(1/\delta)$.

- Generic and modular analysis of Top Two algorithms.
- First asymptotically β-optimal instances for bounded distributions.
- Competitive performance on a real-world non-parametric task.

Paper & Poster

