

Thirty-sixth Conference on Neural Information Processing Systems

Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum

Nian Liu¹, Xiao Wang^{1,2}, Deyu Bo¹, Chuan Shi^{1,2}, Jian Pei³

¹Beijing University of Posts and Telecommunications ²Peng Cheng Laboratory ³Duke University

Thirty-sixth Conference on Neural Information Processing Systems

CONTENTS

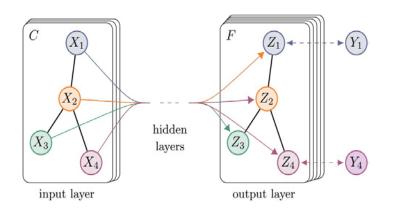
The GAME rule

Experiments Conclusion

Overview

Experiments Conclusion

Graph Neural Network^[1]



Graph Contrastive Learning



Different graph augmentation strategies

Heuristic based

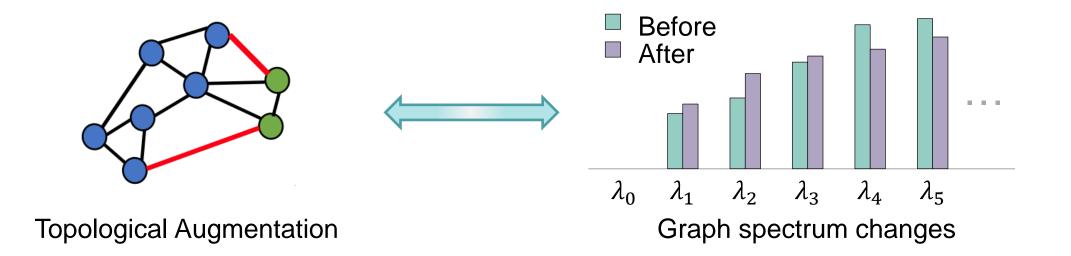
- e.g. Node or edge dropping, Feature masking, Diffusion matrix
- Learning based
 - e.g. InfoMin principle, Disentanglement, Adversarial training
- 1 T. N. Kipf, and M. Welling. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.

Experiments Conclusion

Rethinking Graph Augmentation

- > What information should we preserve or discard in an augmented graph?
- > Are there some **general rules** across different graph augmentation strategies?
- > How to use those general rules to validate and improve the current GCL methods?

SpCo



Explore the effectiveness of augmentations from the graph spectral domain.

The GAME rule

Experiments Conclusion

The GAME rule

Experiments Conclusion

Preliminaries

Symmetric normalized graph Laplacian

$$\hat{\mathcal{L}} = I_n - \hat{A} = D^{-\frac{1}{2}} (D - A) D^{-\frac{1}{2}} = U \Lambda U^{ op}$$

where $\Lambda = diag(\lambda_1, \dots, \lambda_N)$ $U = [u_1^{ op}, \dots, u_N^{ op}] \in \mathbb{R}^{N imes N}$

> Low-frequency & High-frequency components

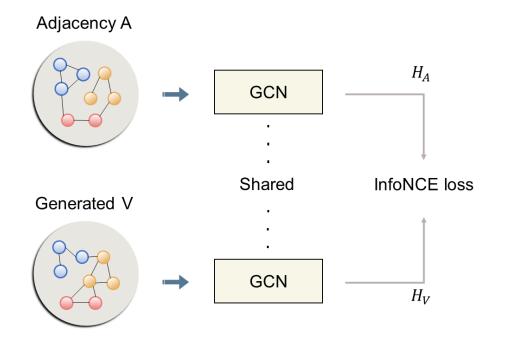
Graph spectrum

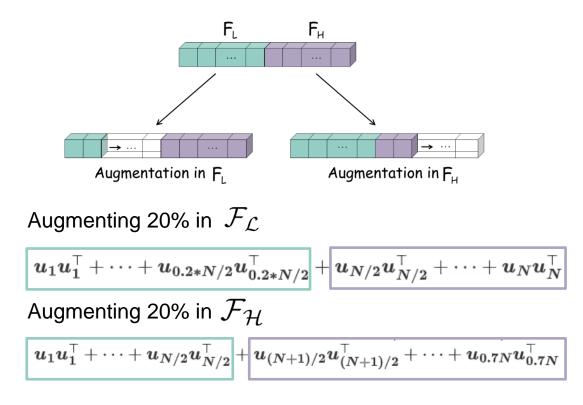
 $\phi(\lambda)$: Amplitudes of different frequency components, indicating which parts of frequency are enhanced or weakened.

Overview The GAME rule SpCo Experiments

An Experimental Investigation

- Aim: In GCL, investigate which part of frequencies should be contrasted.
- Case study model





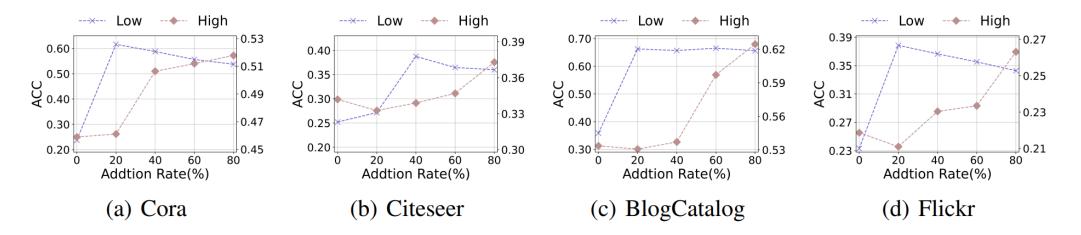
Conclusion

Set $\lambda_i = 1$, only consider the effect of eigenspace $u_i u_i^{\top}$

Experiments

Conclusion

Observation & Results



Observation 1 --- Purple dash line

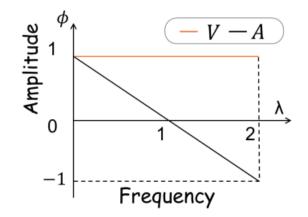
- The performance achieves the best only when the lowest part of $\mathcal{F}_{\mathcal{L}}$ is maintained
- > Observation 2 --- Brown dash line
 - With more high-frequency information in $\mathcal{F}_{\mathcal{H}}$ added, the performance generally rises

SpCo

Experiments

Conclusion

Observation & Results



Maintain the lowest frequency in V => Difference in $\mathcal{F}_{\mathcal{L}}$ becomes smaller Add more high frequency in V => Difference in $\mathcal{F}_{\mathcal{H}}$ becomes larger

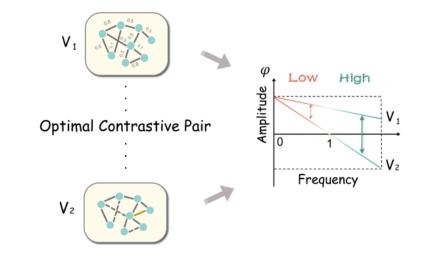
The GAME rule

The General Graph Augmentation Rule

Given two random augmentations V_1 and V_2 , their graph spectrums are $\phi_{V_1}(\lambda)$ and $\phi_{V_2}(\lambda)$. Then, $\forall \lambda_m \in [1,2]$ and $\lambda_n \in [0,1]$, V_1 and V_2 are an effective pair of graph augmentations if the following condition is satisfied:

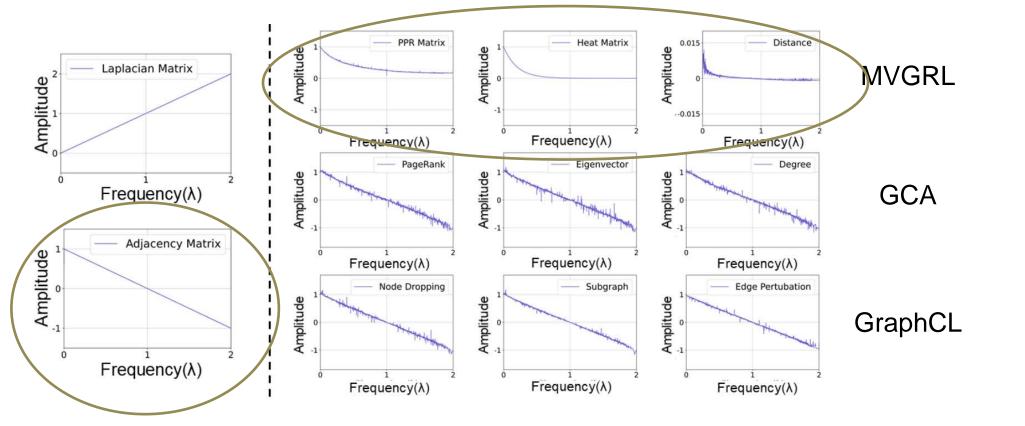
 $|\phi_{V_1}(\lambda_m) - \phi_{V_2}(\lambda_m)| > |\phi_{V_1}(\lambda_n) - \phi_{V_2}(\lambda_n)|.$

We define such pair of augmentations as optimal contrastive pair.



Analysis of The General Graph Augmentation Rule

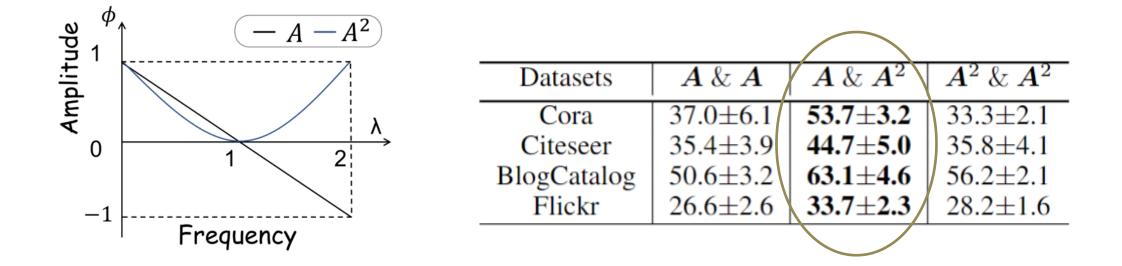
> Experimental analysis 1 --- Contrast between A and 9 existing augmentations



Methods		GraphCL	1		GCA			MVGRL	
Туре	Subgraph	Node dropping	Edge perturbation	Degree	PageRank	Eigenvector	PPR	Heat	Distance
Results	34.9 ± 3.5	29.8 ± 2.3	37.7±4.4	40.2 ± 4.1	38.5 ± 5.0	42.1±4.9	58.0 ±1.6	49.9 ±4.2	46.1 ±7.5

Analysis of The General Graph Augmentation Rule

> Experimental analysis 2 --- Contrast between A & A, $A \& A^2$, $A^2 \& A^2$



Overview The GAME rule SpCo

Analysis of The General Graph Augmentation Rule

Theoretical analysis --- Why does GAME rule work?

Theorem 1. (Contrastive Invariance) Given adjacency matrix A and the generated augmentation V, the amplitudes of *i*-th frequency of A and V are λ_i and γ_i , respectively. With the optimization of InfoNCE loss $\mathcal{L}_{InfoNCE}$, the following upper bound is established:

Experiments

Conclusion

$$\mathcal{L}_{InfoNCE} \leq \frac{1+N}{2} \sum_{i} \theta_i \left[2 - (\lambda_i - \gamma_i)^2 \right]$$

where θ_i is an adaptive weight of the *i*th term.

□ Interpretation

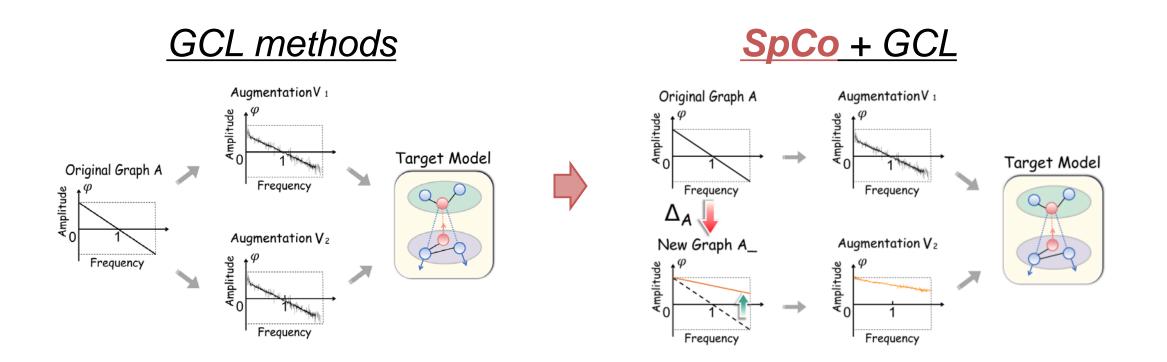
- We find a upper bound for InfoNCE loss.
- Model optimization \rightarrow Upper bound rising \rightarrow larger θ_i attachs to smaller $(\lambda_i \gamma_i)^2$ \rightarrow capture invariance between contrasted views
- The GAME rule emphasizes small difference in low-frequency part, so makes model capture low-frequency information.

The GAME rule

Experiments Conclusion

Spectral Graph Contrastive Learning --- A friendly plug-in

> Target --- Learn a transformation Δ_A , construct optimal contrastive pair A and A_-



Spectral Graph Contrastive Learning --- A friendly plug-in

> Target --- Learn a transformation Δ_A , construct optimal contrastive pair A and A_-

SpCo

> **Optimization objective** (maximization)

The GAME rule

$$\mathcal{J} = \underbrace{\langle \mathcal{C}, \Delta_{A+} \rangle^2}_{\text{Matching Term}} + \underbrace{\epsilon H(\Delta_{A+})}_{\text{Entropy Reg.}} + \underbrace{\langle f, \Delta_{A+} \mathbb{1}_n - a \rangle + \langle g, \Delta_{A+}^\top \mathbb{1}_n - b \rangle}_{\text{Lagrange Constraint Conditions}}$$

- $\Delta A = \Delta_{A+} \Delta_{A-}$
- $\langle \mathbf{U}, \mathbf{V} \rangle = \sum_{ij} U_{ij} V_{ij}$
- $\mathcal{C} = Ug(\lambda)U^{\top}$

Overview

• $g(\lambda)$: monotone increasing

- Entropy regularization
 - => Expose more edges to optimization

Experiments Conclusion

- Lagrange constraint conditions
 - => The row and column sums meet distribution *a* and *b*

Spectral Graph Contrastive Learning --- A friendly plug-in

- > Target --- Learn a transformation Δ_A , construct optimal contrastive pair A and A_-
- > **Optimization objective** (maximization)

$$\mathcal{J} = \underbrace{<\mathcal{C}, \ \Delta_{A+}>^2}_{\text{Matching Term}} + \underbrace{\epsilon H(\Delta_{A+})}_{\text{Entropy Reg.}} + \underbrace{<\boldsymbol{f}, \Delta_{A+} \mathbbm{1}_n - \boldsymbol{a} > + <\boldsymbol{g}, \Delta_{A+}^\top \mathbbm{1}_n - \boldsymbol{b} > }_{\text{Lagrange Constraint Conditions}}$$

Solution

$$\Delta_{\boldsymbol{A}+} = diag(\boldsymbol{u}) \exp\left(2 < \boldsymbol{\mathcal{C}}, \Delta_{\boldsymbol{A}+}' > \boldsymbol{\mathcal{C}} / \epsilon\right) diag(\boldsymbol{v}) = \boldsymbol{U}_{+} \boldsymbol{K}_{+} \boldsymbol{V}_{+}$$

matrix scaling
$$\boldsymbol{u} * (\boldsymbol{K}_{+} \boldsymbol{v}) = \boldsymbol{a}$$
 and $\boldsymbol{v} * (\boldsymbol{K}_{+}^{\top} \boldsymbol{u}) = \boldsymbol{b}$
Sinkhorn's Iteration: $\boldsymbol{u}^{(l+1)} = \boldsymbol{a} / (\boldsymbol{K}_{+} \boldsymbol{v}^{(l)})$ and $\boldsymbol{v}^{(l+1)} = \boldsymbol{b} / (\boldsymbol{K}_{+}^{\top} \boldsymbol{u}^{(l+1)})$

Spectral Graph Contrastive Learning --- A friendly plug-in

- > Target --- Learn a transformation Δ_A , construct optimal contrastive pair A and A_-
- > **Optimization objective** (maximization)

$$\mathcal{J} = \underbrace{<\mathcal{C}, \ \Delta_{A+}>^2}_{\text{Matching Term}} + \underbrace{\epsilon H(\Delta_{A+})}_{\text{Entropy Reg.}} + \underbrace{<\boldsymbol{f}, \Delta_{A+} \mathbbm{1}_n - \boldsymbol{a} > + <\boldsymbol{g}, \Delta_{A+}^\top \mathbbm{1}_n - \boldsymbol{b} > }_{\text{Lagrange Constraint Conditions}}$$

Solution

$$\Delta_{A+} = diag(\boldsymbol{u}) \exp\left(2 < \boldsymbol{\mathcal{C}}, \Delta'_{A+} > \boldsymbol{\mathcal{C}} / \epsilon\right) diag(\boldsymbol{v}) = \boldsymbol{U}_{+}\boldsymbol{K}_{+}\boldsymbol{V}_{+}$$
$$\Delta_{A-} = diag(\boldsymbol{u}') \exp\left(-2 < \boldsymbol{\mathcal{C}}, \Delta'_{A-} > \boldsymbol{\mathcal{C}} / \epsilon\right) diag(\boldsymbol{v}') = \boldsymbol{U}_{-}\boldsymbol{K}_{-}\boldsymbol{V}_{-}$$
$$\Delta_{A} = \Delta_{A+} - \Delta_{A-}$$
$$A_{-} = \boldsymbol{A} + \eta \cdot \mathbb{S} * \Delta_{A}$$

The GAME rule

SpCo

Conclusion

Experiments

The GAME rule

SpCo

Experiments

Conclusion

Datasets.

Dataset	Nodes	Edges	Classes	Features	Training	Validation	Test
Cora	2708	10556	7	1433	35/70/140	500	1000
Citeseer	3327	9228	6	3703	30/60/120	500	1000
BlogCatalog	5196	343486	6	8189	30/60/120	1000	1000
Flickr	7575	479476	9	12047	45/90/180	1000	1000
Pubmed	19717	88651	3	500	15/30/60	500	1000

BaseLines

Classical GNN methods

GCN, GAT

- **GCL models**
 - DGI, MVGRL, GRACE
 - GCA, GraphCL, CCA-SSG

Tasks.

- Node classification
- Visualization of graph spectrum

SpCo

Node classification

Base model: DGI (BCE loss), GRACE (InfoNCE loss), CCA-SSG (CCA loss)

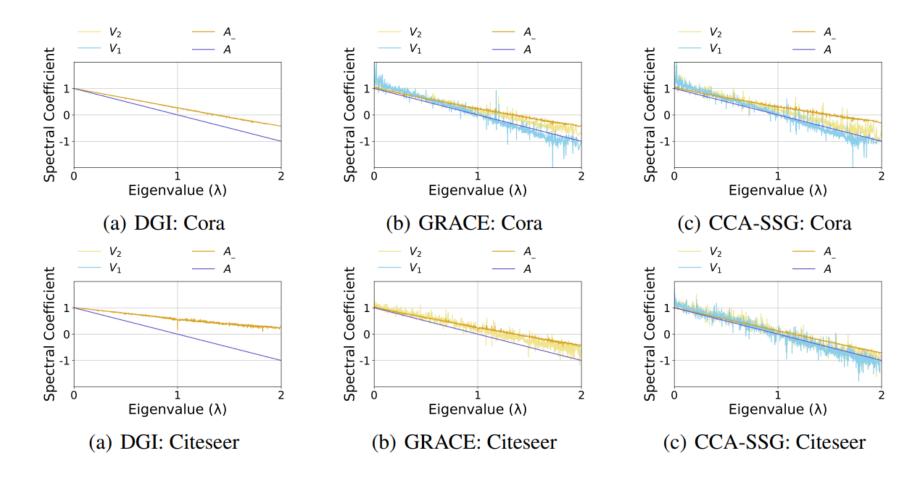
Datasets	Metrics	GCN	GAT	DGI	DGI+SpCo	MVGRL	GRACE	GRACE+SpCo	GCA	GraphCL	CCA-SSG	CCA+SpCo
Cora	Ma-F1	79.6±0.7	81.3±0.3	80.4±0.7	81.1±0.5	81.5±0.5	79.2±1.0	80.3±0.8	79.9±1.1	80.7±0.9	82.9±0.8	83.6±0.4
	Mi-F1	80.7±0.6	82.3±0.2	82.0±0.5	82.8±0.7	82.8±0.4	80.0±1.0	81.2±0.9	81.1±1.0	82.3±0.9	83.6±0.9	84.3±0.4
Citeseer	Ma-F1	68.1±0.5	67.5±0.2	67.7±0.9	68.3±0.5	66.8±0.7	65.1±1.2	65.1±0.8	62.8±1.3	67.8±1.0	67.9±1.0	68.5±1.0
	Mi-F1	70.9±0.5	72.0±0.9	71.7±0.8	72.4±0.5	72.5±0.5	68.7±1.1	69.4±1.0	65.9±1.0	71.9±0.9	73.1±0.7	73.6±1.1
BlogCatalog	Ma-F1	71.2±1.2	67.6±2.2	68.2±1.3	71.5±0.8	80.3±3.6	67.7±1.2	68.2±0.4	71.7±0.4	63.9±2.1	72.0±0.5	72.8±0.3
	Mi-F1	72.1±1.3	68.3±2.2	68.8±1.4	72.3±0.9	80.9±3.6	68.5±1.3	69.4±1.3	72.7±0.5	64.6±2.1	73.0±0.5	73.7±0.3
Flickr	Ma-F1	48.9±1.6	35.0±0.8	31.2±1.6	33.7±0.7	31.2±2.9	35.7±1.3	36.3±1.4	41.2±0.5	32.1±1.1	37.0±1.1	38.7±0.6
	Mi-F1	50.2±1.2	37.1±0.3	33.0±1.6	35.2±0.7	33.4±3.0	37.3±1.0	38.1±1.3	42.2±0.6	34.5±0.9	39.3±0.9	40.4±0.4
PubMed	Ma-F1	78.5±0.3	77.4±0.2	76.8±0.9	77.6±0.6	79.8±0.4	80.0±0.7	80.3±0.3	80.8±0.6	77.0±0.4	80.7±0.6	81.3±0.3
	Mi-F1	78.9±0.3	77.8±0.2	76.7±0.9	77.4±0.5	79.7±0.3	79.9±0.7	80.7±0.2	81.4±0.6	76.8±0.5	81.0±0.6	81.5±0.4

SpCo can generally improve performances compared with base models

Experiments

Conclusion

Visualization of graph spectrum



A and A₋ is optimal contrastive pair, so boosting the final results.

The GAME rule

SpCo

Experiments

Conclusion

Conclusion

CoGSL

Experiments

Augmentation strategies & Graph spectrum.

Reveal the general graph augmentation rule (The GAME rule) Explain why GCL works (Contrastive Invariance Theorem)

Optimal contrastive pair & SpCo.

Propose a novel concept -- optimal contrastive pair Theoretically derive a general GCL framework -- SpCo

Extensive experiments.

DGI/GRACE/CCA-SSG + SpCo, validate the effectiveness of SpCo

Conclusion

Thank you!

Contact:

Nian Liu, nianliu@bupt.edu.cn

More Information:

http://www.shichuan.org/

Our official account:

图数据挖掘和机器学习

