

KAIST Industrial & Systems Engineering Dept. APPLIED ARTIFICIAL INTELLIGENCE LAB

NeurIPS 2022

KAIST

Unknown-Aware Domain Adversarial Learning for Open-Set Domain Adaptation

JoonHo Jang,¹ Byeonghu Na¹, DongHyeok Shin¹, Mingi Ji,¹ Kyungwoo Song,² II-Chul Moon^{1, 3}

Correspondence to: II-Chul Moon <icmoon@kaist.ac.kr>

Copyright © 2022 by JoonHo Jang, Dept. of Industrial and Systems Engineering, KAIST

- (Unsupervised) Domain Adaptation
 - We train a model to get high accuracy on the **unlabeled** *target* domain by leveraging the fully labeled source domain knowledge.
- Open-Set Domain Adaptation :
 - However, in a realistic scenario, the target domain may have additional classes called "Open-Set".
 - Domain Adaptation where the target domain contains unknown classes.

Unknown

Preliminary

- Domain Adaptation
 - Target Classification Error ≤ Source Classification Error + Distribution Matching
- Domain Adversarial Learning
 - The adversarial framework adapts **the feature extractor** *G* toward indistinguishable feature distributions between the source and the target domain by the *minimax game* with **domain discriminator** *D*.
 - Domain Discriminator: $D(G(x)) = [D_s(G(x)), D_t(G(x))]$

Preliminary

- Domain Adaptation
 - Target Classification Error ≤ Source Classification Error + Distribution Matching
- Domain Adversarial Learning
 - The minimax game is formalized as

$$\min_{\theta_g} \max_{\theta_d} -\mathcal{L}_d(\theta_g, \theta_d) = -\mathbb{E}_{x \sim p_s(x)} \left[-\log D_s(G(x)) \right] - \mathbb{E}_{x \sim p_t(x)} \left[-\log D_t(G(x)) \right]$$

Source

Target

Preliminary

- Open-Set Domain Adaptation
 - Target domain contains "Unknown" classes.
- Domain Adversarial Learning to Open-Set Domain Adaptation

It enforces to include the target-*unknown* features in the distribution matching. \rightarrow performance degradation by negative transfer.

Domain Adversarial Learning is essential part for feature distribution matching.

For Open-Set Domain Adaptation, the existing approaches of Domain Adversarial Learning is not applicable directly due to the existence of target-*unknown* features.

Domain Adversarial Learning should be designed **simultaneously** to **align** source and target-*known* and to **segregate** target-*unknown* features.

Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL) for Open-Set Domain Adaptation.

- Unknown-Aware Domain Adversarial Learning
 - Domain Discriminator should be able to identify three domain types:
 - Source (s), Target-Known (tk), and Target-Unknown (tu)

 $D(G(x)) = [D_s(G(x)), D_{tk}(G(x)), D_{tu}(G(x))]$

Domain Discrimination Loss

 $\mathcal{L}_d(\theta_g, \theta_d) = \mathbb{E}_{x \sim p_s(x)} \Big[-\log D_s \big(G(x) \big) \Big] + \mathbb{E}_{x \sim p_t(x)} \Big[-w_x \log D_{tk} \big(G(x) \big) - (1 - w_x) \log D_{tu} \big(G(x) \big) \Big]$

Copyright © 2022 by JoonHo Jang, Dept. of Industrial and Systems Engineering, KAIST

- Unknown-Aware Domain Adversarial Learning
 - Domain Discriminator should be able to identify three domain types:
 - Source (s), Target-Known (tk), and Target-Unknown (tu)

$$D(G(x)) = [D_s(G(x)), D_{tk}(G(x)), D_{tu}(G(x))]$$

Domain Discrimination Loss

$$\mathcal{L}_{d}(\theta_{g},\theta_{d}) = \mathbb{E}_{x \sim p_{s}(x)} \left[-\log D_{s}(G(x)) \right] + \mathbb{E}_{x \sim p_{t}(x)} \left[-w_{x} \log D_{tk}(G(x)) - (1 - w_{x}) \log D_{tu}(G(x)) \right]$$

$$\downarrow \mathcal{L}_{d}^{s}(\theta_{g},\theta_{d}) \qquad \downarrow \mathcal{L}_{d}^{t} = \mathcal{L}_{d}^{tk}(\theta_{g},\theta_{d}) + \mathcal{L}_{d}^{tu}(\theta_{g},\theta_{d})$$

Sequential Optimization

$$\begin{split} \min_{\theta_d} \mathcal{L}_D \big(\theta_g, \theta_d \big) &= \mathcal{L}_d^s (\theta_g, \theta_d) + \mathcal{L}_d^{tk} (\theta_g, \theta_d) + \mathcal{L}_d^{tu} (\theta_g, \theta_d) \\ \max_{\theta_g} \mathcal{L}_G \big(\theta_g, \theta_d \big) &= \mathcal{L}_d^s \big(\theta_g, \theta_d \big) + \mathcal{L}_d^{tk} \big(\theta_g, \theta_d \big) - \mathcal{L}_d^{tu} (\theta_g, \theta_d) \end{split}$$

- Unknown-Aware Domain Adversarial Learning
 - Sequential Optimization

$$\begin{split} \min_{\theta_d} \mathcal{L}_D \Big(\theta_g, \theta_d \Big) &= \mathcal{L}_d^s (\theta_g, \theta_d) + \mathcal{L}_d^{tk} (\theta_g, \theta_d) + \mathcal{L}_d^{tu} (\theta_g, \theta_d) \\ \max_{\theta_g} \mathcal{L}_G \Big(\theta_g, \theta_d \Big) &= \mathcal{L}_d^s \Big(\theta_g, \theta_d \Big) + \mathcal{L}_d^{tk} \Big(\theta_g, \theta_d \Big) - \mathcal{L}_d^{tu} (\theta_g, \theta_d) \end{split}$$

$$D^*(z) = \begin{bmatrix} p_s(z) \\ 2p_{avg}(z) \end{bmatrix}, \frac{\lambda_{tk}p_{tk}(z)}{2p_{avg}(z)}, \frac{\lambda_{tu}p_{tu}(z)}{2p_{avg}(z)} \end{bmatrix}, \quad p_{avg}(z) = (p_s(z) + \lambda_{tk}p_{tk}(z) + \lambda_{tu}p_{tu}(z))/2,$$
$$z = G(x) \text{ with fixed } G.$$

$$\min_{\theta_g} -\mathcal{L}_G(\theta_g, \theta_d^*) = D_{KL}(p_s \parallel p_{avg}) + \lambda_{tk} D_{KL}(p_{tk} \parallel p_{avg}) - \lambda_{tu} D_{KL}(p_{tu} \parallel p_{avg}) + C_0$$

$$\text{Alignment on } s \text{ and } tk. \qquad \text{Segregation on } tu. \\ p_s \approx p_{tk} \qquad p_{tu} \leftrightarrow \{p_{tk}, p_s\}$$

$$\text{[Theorem 3.1.]}$$

- Open-Set Recognition
 - Motivation: Given Decision boundary on known-classes by the source domain,

Target-Known Instances \longrightarrow Certain Classification Case \longrightarrow Low Entropy, $\ell_x \downarrow$ Target-Unknown Instances \longrightarrow Uncertain Classification Case \longrightarrow High Entropy, $\ell_x \uparrow$

Posterior Inference

$$\widehat{w}_{x} \coloneqq p(known|\ell_{x}) = \frac{\lambda_{tk}p(\ell_{x}|known)}{\lambda_{tk}p(\ell_{x}|known) + \lambda_{tu}p(\ell_{x}|unknown)}$$
By fitting Beta Mixture Model

- Open-Set Classification
 - Classifier C is the extended classifier with the dimensions including the unknown class, y_{unk}.

$$\mathcal{L}_{cls}(\theta_{g},\theta_{c}) = \sum_{(x_{s},y_{s})\in X_{s}} \mathcal{L}_{CE}(C(G(x_{s})),y_{s}) + \sum_{x_{t}\in X_{t}} (1-\widehat{w}_{x})\mathcal{L}_{CE}(C(G(x_{t})),y_{unk}) + \sum_{x_{t}\in X_{t}} \mathcal{L}_{H}(C(G(x_{t})))$$
Source Classification
Target Unknown Classification
 $(1-\widehat{w}_{x}) \uparrow \rightarrow y_{unk} \uparrow$

Experimental Part

- Experimental Results
 - We conducted the experiments on Office-31 and Office-Home with three backbone networks.
 - In order to show the robustness of the architecture choice.

Backbone (#)/		Office-31							Office-Home												
	Model	A-W	A-D	D-W	W-D	D-A	W-A	Avg.	P-R	P-C	P-A	A-P	A-R	A-C	R-A	R-P	R-C	C-R	C-A	C-P	Avg.
EfficientNet-B0 (5.3M)	DANN	63.2	72.7	92.6	94.8	63.7	57.2	74.0±0.3	35.7	16.5	18.2	34.1	46.3	22.9	40.7	47.8	28.2	12.4	7.5	13.4	27.0 ± 0.3
	CDAN	65.5	73.6	92.4	94.6	64.8	57.9	74.8±0.2	37.9	18.1	20.4	35.6	47.0	24.6	44.1	49.8	30.1	13.5	8.9	15.0	28.8 ± 0.6
	STA	58.3	62.2	81.6	79.6	69.8	67.4	69.8±1.2	59.4	43.6	51.9	53.8	60.6	49.5	58.8	53.5	49.9	53.4	49.5	49.4	52.8 ± 0.2
	OSBP	82.9	87.0	33.8	96.7	27.3	69.9	66.3±2.1	65.0	46.0	58.6	64.2	71.0	54.0	58.3	62.5	50.3	63.7	50.7	55.6	58.3 ± 1.6
	ROS	69.7	80.1	94.7	99.6	73.0	59.2	79.4±0.3	66.9	44.9	53.7	62.5	69.5	50.0	62.0	67.0	52.0	61.2	50.5	54.7	57.9 ± 0.1
	DANCE	68.1	68.8	91.3	85.0	68.5	63.3	74.2 ± 4.0	17.2	47.5	7.2	26.6	19.6	36.6	2.2	19.8	10.9	6.4	4.3	19.0	18.1 ± 2.9
	DCC	87.2	69.1	89.4	94.4	63.5	76.1	79.9±2.9	72.2	41.0	56.5	66.4	75.7	52.8	55.9	71.5	49.9	60.4	48.1	60.8	59.3±1.5
	UADAL	87.5	88.3	97.4	96.9	74.1	68.9	85.5±0.5	75.0	50.0	62.9	66.4	74.1	52.7	71.5	72.6	53.6	65.3	60.8	63.7	64.1 ± 0.1
	cUADAL	86.5	89.1	<u>97.3</u>	98.0	72.5	71.0	85.7±0.7	<u>74.7</u>	54.4	64.2	66.3	73.9	50.8	71.4	73.0	<u>52.4</u>	65.3	61.0	<u>63.3</u>	$64.2{\pm}0.1$
DenseNet-121 (7.9M)	DANN	71.9	72.0	90.2	85.3	73.8	72.3	77.6±0.5	68.8	35.4	48.7	62.6	71.9	45.3	62.8	68.7	45.9	62.2	47.0	54.7	56.2±0.3
	CDAN	69.5	69.8	86.8	84.5	73.8	72.5	76.2±0.2	68.9	39.2	51.9	62.6	71.8	47.1	63.6	68.0	48.7	62.8	49.3	55.2	57.4 ± 0.3
	STA	77.0	68.6	84.0	77.2	76.6	75.1	76.4±1.5	65.6	46.1	58.4	55.8	64.3	50.4	62.6	58.6	51.1	61.0	56.0	55.9	57.1 ± 0.1
	OSBP	81.9	83.0	88.9	96.6	73.1	74.9	83.1±2.2	71.9	46.0	60.3	67.1	72.3	54.5	65.9	71.7	53.7	66.8	59.3	64.1	62.8 ± 0.1
	ROS	67.0	67.8	97.4	99.4	77.1	71.8	80.1±1.3	73.0	49.6	59.2	67.8	75.5	52.8	66.4	74.6	54.3	64.8	53.0	57.8	62.4 ± 0.1
	DANCE	69.9	67.8	84.0	82.8	79.9	81.1	77.6±0.3	51.8	51.0	59.7	63.9	58.2	58.2	43.4	48.9	55.0	41.3	54.6	60.6	53.9 ± 0.5
	DCC	83.9	80.8	88.4	93.1	<u>79.7</u>	80.4	84.4±1.3	75.1	46.6	58.0	70.8	78.6	56.6	63.4	75.5	55.8	71.3	55.0	63.3	64.2 ± 0.2
	UADAL	86.0	82.3	96.7	99.2	77.9	74.2	86.0 ± 0.6	75.7	45.5	61.5	70.0	76.9	57.3	71.5	76.1	60.4	70.0	60.1	67.2	66.0 ± 0.2
	cUADAL	<u>85.1</u>	83.6	96.4	99.6	77.5	75.9	86.4±0.6	<u>75.6</u>	48.9	61.7	70.0	76.7	<u>57.8</u>	71.9	76.7	<u>59.1</u>	69.6	60.1	67.5	66.3±0.3
ResNet-50 (25.5M)	DANN	68.1	71.5	86.7	82.5	73.7	72.6	75.9±0.5	69.8	44.6	56.3	65.2	71.0	51.2	65.4	68.4	50.9	66.7	57.6	60.9	60.7 ± 0.2
	CDAN	64.9	66.8	84.3	80.5	72.7	71.0	73.4±1.3	69.7	47.2	58.6	65.1	70.7	52.9	66.0	67.6	52.7	67.1	58.2	61.7	61.4 ± 0.3
	STA*	75.9	75.0	69.8	75.2	73.2	66.1	72.5±0.8	69.5	53.2	61.9	54.0	68.3	55.8	67.1	64.5	54.5	66.8	57.4	60.4	61.1 ± 0.3
	OSBP*	82.7	82.4	97.2	91.1	75.1	73.7	83.7±0.4	73.9	53.2	63.2	65.2	72.9	55.1	66.7	72.3	54.5	70.6	64.3	64.7	64.7 ± 0.2
	PGL*	74.6	72.8	76.5	72.2	69.5	70.1	72.6 ± 1.5	41.6	46.6	47.2	45.6	55.8	29.3	11.4	52.5	0.0	45.6	10.0	36.8	35.2
	ROS*	82.1	82.4	96.0	99.7	77.9	77.2	85.9±0.2	74.4	56.3	60.6	69.3	76.5	60.1	68.8	75.7	60.4	68.6	58.9	65.2	66.2 ± 0.3
	DANCE	66.9	70.7	80.0	84.8	65.8	70.2	73.1 ± 1.0	41.2	55.7	54.2	49.8	39.4	53.1	27.5	44.0	48.3	30.2	40.9	45.9	44.2 ± 0.6
	DCC*	87.1	85.5	91.2	87.1	85.5	84.4	86.8	64.0	52.8	59.5	67.4	80.6	52.9	56.0	62.7	76.9	67.0	49.8	66.6	64.2
	OSLPP*	89.0	91.5	92.3	93.6	79.3	78.7	87.4	74.0	59.3	63.6	72.8	74.3	61.0	67.2	74.4	59.0	70.4	60.9	66.9	67.0
	UADAL	89.1	86.0	<u>97.8</u>	<u>99.5</u>	79.7	76.5	$\frac{88.1\pm0.2}{22}$	76.9	56.6	<u>63.0</u>	70.8	77.4	<u>63.2</u>	72.1	76.8	60.6	73.4	64.2	69.5	68.7±0.2
	cUADAL	90.1	87.9	98.2	99.4	80.5	75.1	88.5±0.3	76.8	54.6	62.9	71.6	77.5	63.6	72.6	76.7	59.9	72.6	65.0	68.3	68.5 ± 0.1

Copyright © 2022 by JoonHo Jang, Dept. of Industrial and Systems Engineering, KAIST

Experimental Part

HOS, UNK ↑

- **Experimental Results**
 - Correlation analysis between the **PAD on** *tk* and *tu* and the evaluation metrics, **HOS** and **UNK**.

t-SNE Analysis

Conclusion

- We proposed Unknown-Aware Domain Adversarial Learning (UADAL) for Open-Set Domain Adaptation.
 - The first approach to explicitly design the *segregation* of the target-unknown features (*tu*) in the domain adversarial learning framework for Open-Set Domain Adaptation.
- We design a new domain discrimination loss and formulate the sequential optimization for the unknown-aware feature alignment.
 - By replacing a two-way domain discriminator with the three-way to handle *tu* information.
 - Providing theoretical analyses on the optimized state of the proposed feature alignment.
- We evaluate UADAL on the benchmark datasets with varying the backbone networks.
 - Empirically, we demonstrated that better feature alignment for OSDA leads to the performances.

Thank you

Contact: adkto8093@kaist.ac.kr