Fast Algorithms for Packing Proportional Fairness and its Dual

David Martínez-Rubio
joint work with Francisco Criado and Sebastian Pokutta

Zuse Institute Berlin \& TU Berlin
NeurIPS 2022

Berlin Mathematics Research Center

α-Fairness and Proportional Fairness

α-fairness: a family of fair objectives

Maximize the $(1-\alpha)$-mean of coordinates of a point in a convex set.

- $\alpha=0 \Rightarrow$ arithmetic mean, maximize utility, no fairness.
- $\alpha=1 \Rightarrow$ geometric mean, proportional fairness.
- $\alpha \rightarrow \infty \Rightarrow$ max-min fairness.

In this work: Proportional fairness.

- Studied in economics in Nash bargaining solutions, in game theory, multi-resource allocation in compute clusters, rate control in networks.

Packing Proportional Fairness and its Dual

Packing Proportional Fairness problem, $A \in \mathcal{M}_{m \times n}\left(\mathbb{R}_{\geq 0}\right)$:

$$
\max _{x \in \mathbb{R}_{\geq 0}^{n}}\left\{f(x) \stackrel{\text { def }}{=} \sum_{i=1}^{n} \log x_{i}: A x \leq \mathbb{1}_{m}\right\} .
$$

And its Lagrange dual is:

$$
\min _{\lambda \in \Delta^{m}}\left\{g(\lambda) \stackrel{\text { def }}{=}-\sum_{i=1}^{n} \log \left(A^{\top} \lambda\right)_{i}-n \log n\right\}
$$

- Approximate primal solution $\stackrel{\text { fast }}{\rightarrow \rightarrow}$ approximate dual solution.
- We design two very different algorithms for each problem.

Results and Comparison

Paper	Problem	Iterations	Width-dependence?
(Beck et al., 2014)	Primal	$O\left(\rho^{2} m n / \varepsilon\right)$	Yes
(Marašević et al., 2016)	Primal	$\widetilde{O}\left(n^{5} / \varepsilon^{5}\right)$	nearly No (polylog)
(Diakonikolas et al., 2020)	Primal	$\widetilde{O}\left(n^{2} / \varepsilon^{2}\right)$	nearly No (polylog)
CMP (Theorem 5)	Primal	$\widetilde{O}(n / \varepsilon)$	No
(Beck et al., 2014)	Dual	$O(\rho \sqrt{m n / \varepsilon})$	Yes
CMP (Theorem 9)	Dual	$\widetilde{O}\left(n^{2} / \varepsilon\right)$	No

- $\rho \stackrel{\text { def }}{=} \frac{\max A_{i j}}{\min _{A_{i j} \neq 0} A_{i j}}$ is the width of the matrix.
- A is a $m \times n$ matrix.
- Our algorithms: accelerated, distributed, deterministic and width-independent.

Primal problem

Reparametrize $x \rightarrow \exp (y)$ and remove constraints by adding a fast growing barrier (Diakonikolas et al, 2020):

$$
f_{r}(y) \stackrel{\text { def }}{=}-\sum_{i=1}^{n} y_{i}+\frac{\beta}{1+\beta} \sum_{i=1}^{m}(A \exp (y))_{i}^{\frac{1+\beta}{\beta}}, \text { where } \beta \approx \frac{\varepsilon}{n \log \left(m n^{2} / \varepsilon\right)} .
$$

Proposition: If y^{ε} is an ε-minimizer of f_{r}, then $\frac{1}{1+\varepsilon / n} y^{\varepsilon}$ is feasible and is an $O(\varepsilon)$-maximizer of f.

Primal solution: Acceleration

Acceleration: Combine a GD algorithm with an online learning algorithm. Progress of the former compensates instantaneous regret of the latter.

We use non-standard versions of a Gradient Descent algorithm and of a Mirror Descent algorithm by using truncated gradients.

Primal problem

1. Smoothness and Lipschitz constants are bad but the objective has structure:

- $\nabla_{j} f_{r}(x) \in[-1, \infty)$ for $j \in[n]$.
- A small gradient step decreases the function value significantly:

$$
\left\langle\nabla f_{r}(x), \Delta\right\rangle \geq f_{r}(x)-f_{r}(x-\Delta) \geq \frac{1}{2}\left\langle\nabla f_{r}(x), \Delta\right\rangle \geq 0
$$

for $\Delta \in \mathbb{R}^{n}$ satisfying the following:

$$
\Delta_{j} \stackrel{\text { def }}{=} \frac{c_{j} \beta}{4(1+\beta)} \min \left\{\nabla_{j} f_{r}(x), 1\right\}, \quad \forall c_{j} \in[0,1], \forall j \in[n]
$$

Primal problem

1. Smoothness and Lipschitz constants are bad but the objective has structure:

- $\nabla_{j} f_{r}(x) \in[-1, \infty)$ for $j \in[n]$.
- A small gradient step decreases the function value significantly:

$$
\left\langle\nabla f_{r}(x), \Delta\right\rangle \geq f_{r}(x)-f_{r}(x-\Delta) \geq \frac{1}{2}\left\langle\nabla f_{r}(x), \Delta\right\rangle \geq 0
$$

for $\Delta \in \mathbb{R}^{n}$ satisfying the following:

$$
\Delta_{j} \stackrel{\text { def }}{=} \frac{c_{j} \beta}{4(1+\beta)} \min \left\{\nabla_{j} f_{r}(x), 1\right\}, \quad \forall c_{j} \in[0,1], \forall j \in[n] .
$$

2. We run Mirror Descent on truncated losses.

$$
f_{r}\left(\frac{1}{T} \sum_{i=1}^{T} x_{i}\right)-f_{r}\left(x^{*}\right) \leq \underbrace{\left\langle\overline{\nabla f_{r}}\left(x_{i}\right), x_{i}-x^{*}\right\rangle}_{\text {Regret }_{i}}+\frac{1}{T} \sum_{i=1}^{T}\left\langle\nabla f_{r}\left(x_{i}\right)-\overline{\nabla f_{r}}\left(x_{i}\right), x_{i}-x^{*}\right\rangle
$$

3. The gradient step compensates the MD regret and the regret we ignored due to truncation.

Dual Problem: The Centroid Map and a Reduction

$\mathcal{P} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}_{\geq 0}^{n}: A x \leq \mathbb{1}_{m}\right\}$, $c(h)=\left(\frac{1}{n h_{1}}, \ldots, \frac{1}{n h_{n}}\right)$, $\mathcal{D}=\operatorname{conv}\left\{A_{i}: i \in[m]\right\} \quad \mathcal{D}^{+}=\left(\operatorname{conv}\left\{A_{i}: i \in[m]\right\}+(-\infty, 0]^{n}\right) \cap \mathbb{R}_{\geq 0}^{n}$

$$
\min _{p \in c\left(\mathcal{D}^{+}\right)}\left\{\hat{g}(p) \stackrel{\text { def }}{=} \max _{i \in[m]}\left\langle A_{i}, p\right\rangle\right\} .
$$

Proposition: If $p=c\left(A^{\top} \lambda\right)$ and p is an (ε / n)-minimizer of \hat{g}, then λ is an ε-minimizer of the dual problem g.

Dual Problem: The PST Framework

 Optimizing \hat{g} is an (approximate) linear feasibility problem: Find $x \in c\left(D^{+}\right)$such that $A x \leq(1+\varepsilon) \mathbb{1}_{m}$.
PST Framework

- Generate a covering constraint as $h=A^{T} \lambda$, for weights $\lambda \in \Delta^{m}$.
- Use an oracle to satisfy h : Find $x \in c\left(D^{+}\right)$s.t. $\langle h, x\rangle \leq 1$
- Increase the weight λ_{i} the more, the greater $\left\langle A_{i}, x\right\rangle-1 \in[-\tau, \sigma]$ is, i.e., the more x does not satisfy A_{i} (MWs algorithm).
- Guarantees convergence in $O\left(\sigma \tau / \varepsilon^{2}\right)$.

Improving over PST: Adaptive Oracle

The closer we are to a solution the smaller the lens L_{δ} is.
\Rightarrow the smaller τ and σ are.

Improved strategy

- Implement an oracle that yields smaller τ_{δ} and σ_{δ} if δ is lower.
- Start with a δ-minimizer of \hat{g}.
- Find a $\delta / 2$-minimizer using the adaptive oracle and PST: It takes $O\left(\tau_{\delta} \sigma_{\delta} /(\delta / 2)^{2}\right)$.
- Repeat until $\delta<\varepsilon / n$. Total complexity is $O\left(n^{2} / \varepsilon\right)$.

