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α-Fairness and Proportional Fairness

α-fairness: a family of fair objectives
Maximize the (1− α)-mean of coordinates of a point in a convex set.
• α = 0⇒ arithmetic mean, maximize utility, no fairness.
• α = 1⇒ geometric mean, proportional fairness.
• α→∞⇒ max-min fairness.

In this work: Proportional fairness.
• Studied in economics in Nash bargaining solutions, in game

theory, multi-resource allocation in compute clusters, rate
control in networks.
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Packing Proportional Fairness and its Dual

Packing Proportional Fairness problem, A ∈Mm×n(R≥0):

max
x∈Rn

≥0

{
f (x)

def
=

n∑
i=1

log xi : Ax ≤ 1m

}
.

And its Lagrange dual is:

min
λ∈∆m

{
g(λ)

def
= −

n∑
i=1

log(ATλ)i − n log n
}
,

• Approximate primal solution
fast

6→ approximate dual solution.
• We design two very di�erent algorithms for each problem.
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Results and Comparison

Paper Problem Iterations Width-dependence?
(Beck et al., 2014) Primal O(ρ2mn/ε) Yes
(Marašević et al., 2016) Primal Õ(n5/ε5) nearly No (polylog)
(Diakonikolas et al., 2020) Primal Õ(n2/ε2) nearly No (polylog)
CMP (Theorem 5) Primal Õ(n/ε) No
(Beck et al., 2014) Dual O(ρ

√
mn/ε) Yes

CMP (Theorem 9) Dual Õ(n2/ε) No

• ρ def
=

max Aij
minAij 6=0 Aij

is the width of the matrix.

• A is a m× n matrix.
• Our algorithms: accelerated, distributed, deterministic and

width-independent.
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Primal problem
Reparametrize x→ exp(y) and remove constraints by adding a fast
growing barrier (Diakonikolas et al, 2020):

fr(y)
def
= −

n∑
i=1

yi +
β

1 + β

m∑
i=1

(A exp(y))
1+β
β

i , where β ≈ ε

n log(mn2/ε)
.

Proposition: If yε is an ε-minimizer of fr, then 1
1+ε/ny

ε is feasible and
is an O(ε)-maximizer of f .
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Primal solution: Acceleration

Acceleration: Combine a GD algorithm with an online learning
algorithm. Progress of the former compensates instantaneous regret
of the latter.

We use non-standard versions of a Gradient Descent algorithm and of
a Mirror Descent algorithm by using truncated gradients.
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Primal problem
1. Smoothness and Lipschitz constants are bad but the objective

has structure:
• ∇jfr(x) ∈ [−1,∞) for j ∈ [n].
• A small gradient step decreases the function value significantly:

〈∇fr(x),∆〉 ≥ fr(x)− fr(x −∆) ≥ 1
2 〈∇fr(x),∆〉 ≥ 0,

for ∆ ∈ Rn satisfying the following:

∆j
def
=

cjβ
4(1 + β)

min{∇jfr(x), 1}, ∀cj ∈ [0, 1],∀j ∈ [n].

2. We run Mirror Descent on truncated losses.

fr(
1
T

T∑
i=1

xi)−fr(x∗) ≤ 〈∇fr(xi), xi − x∗〉︸ ︷︷ ︸
Regreti

+
1
T

T∑
i=1

〈∇fr(xi)−∇fr(xi), xi−x∗〉

3. The gradient step compensates the MD regret and the regret we
ignored due to truncation.
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Dual Problem: The Centroid Map and a Reduction

P def
= {x ∈ Rn

≥0 : Ax ≤ 1m}, c(h) =

(
1
nh1

, . . . ,
1
nhn

)
,

D = conv{Ai : i ∈ [m]} D+ = (conv{Ai : i ∈ [m]}+ (−∞,0]n) ∩Rn
≥0

min
p∈c(D+)

{
ĝ(p)

def
= max

i∈[m]
〈Ai,p〉

}
.

Proposition: If p = c(ATλ) and p is an (ε/n)-minimizer of
ĝ, then λ is an ε-minimizer of the dual problem g. 7 / 9



Dual Problem: The PST Framework
Optimizing ĝ is an (approximate) linear feasibility problem: Find
x ∈ c(D+) such that Ax ≤ (1 + ε)1m.
PST Framework
• Generate a covering constraint as h = ATλ, for weights λ ∈ ∆m.
• Use an oracle to satisfy h: Find x ∈ c(D+) s.t. 〈h, x〉 ≤ 1
• Increase the weight λi the more, the greater 〈Ai, x〉 − 1 ∈ [−τ, σ] is,

i.e., the more x does not satisfy Ai (MWs algorithm).
• Guarantees convergence in O(στ/ε2).
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Improving over PST: Adaptive Oracle
The closer we are to a solution the smaller the lens Lδ is.
⇒ the smaller τ and σ are.
Improved strategy
• Implement an oracle that yields smaller τδ and σδ if δ is lower.
• Start with a δ-minimizer of ĝ.
• Find a δ/2-minimizer using the adaptive oracle and PST: It takes
O(τδσδ/(δ/2)2).
• Repeat until δ < ε/n. Total complexity is O(n2/ε).
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