## Fast Algorithms for Packing Proportional Fairness and its Dual

#### David Martínez-Rubio

joint work with Francisco Criado and Sebastian Pokutta

Zuse Institute Berlin & TU Berlin

#### NeurIPS 2022



Berlin Mathematics Besearch Center



# $\alpha\text{-}\mathsf{Fairness}$ and Proportional Fairness

#### $\alpha\text{-fairness:}$ a family of fair objectives

Maximize the  $(1 - \alpha)$ -mean of coordinates of a point in a convex set.

- $\alpha = \mathbf{0} \Rightarrow$  arithmetic mean, maximize utility, no fairness.
- $\alpha = \mathbf{1} \Rightarrow$  geometric mean, proportional fairness.
- $\alpha \rightarrow \infty \Rightarrow$  max-min fairness.

#### In this work: Proportional fairness.

• Studied in economics in Nash bargaining solutions, in game theory, multi-resource allocation in compute clusters, rate control in networks.



## Packing Proportional Fairness and its Dual

Packing Proportional Fairness problem,  $A \in \mathcal{M}_{m \times n}(\mathbb{R}_{\geq 0})$ :

$$\max_{\mathbf{x}\in\mathbb{R}^n_{\geq 0}}\left\{f(\mathbf{x})\stackrel{\text{def}}{=}\sum_{i=1}^n\log x_i:A\mathbf{x}\leq\mathbb{1}_m\right\}.$$

And its Lagrange dual is:

$$\min_{\lambda \in \Delta^m} \left\{ g(\lambda) \stackrel{\text{def}}{=} -\sum_{i=1}^n \log(A^T \lambda)_i - n \log n \right\},\,$$

• Approximate primal solution  $\stackrel{_{\mathrm{fast}}}{\not \rightarrow}$  approximate dual solution.

• We design two very different algorithms for each problem.



# **Results and Comparison**

| Paper                       | Problem | Iterations                       | Width-dependence?          |
|-----------------------------|---------|----------------------------------|----------------------------|
| (Beck et al., 2014)         | Primal  | $O( ho^2 mn/arepsilon)$          | Yes                        |
| (Marašević et al., 2016)    | Primal  | $\widetilde{O}(n^5/arepsilon^5)$ | nearly <b>No</b> (polylog) |
| (Diakonikolas et al., 2020) | Primal  | $\widetilde{O}(n^2/arepsilon^2)$ | nearly <b>No</b> (polylog) |
| CMP (Theorem 5)             | Primal  | $\widetilde{O}(n/arepsilon)$     | No                         |
| (Beck et al., 2014)         | Dual    | $O(\rho\sqrt{mn/\varepsilon})$   | Yes                        |
| CMP (Theorem 9)             | Dual    | $\widetilde{O}(n^2/arepsilon)$   | No                         |

• 
$$\rho \stackrel{\text{def}}{=} \frac{\max A_{ij}}{\min_{A_{ij} \neq 0} A_{ij}}$$
 is the width of the matrix.

- A is a  $m \times n$  matrix.
- Our algorithms: accelerated, distributed, deterministic and width-independent.



### Primal problem

Reparametrize  $x \rightarrow \exp(y)$  and remove constraints by adding a fast growing barrier (Diakonikolas et al, 2020):

$$f_r(y) \stackrel{\text{\tiny def}}{=} -\sum_{i=1}^n y_i + \frac{\beta}{1+\beta} \sum_{i=1}^m (A \exp(y))_i^{\frac{1+\beta}{\beta}}, \text{ where } \beta \approx \frac{\varepsilon}{n \log(mn^2/\varepsilon)}.$$

**Proposition:** If  $y^{\varepsilon}$  is an  $\varepsilon$ -minimizer of  $f_r$ , then  $\frac{1}{1+\varepsilon/n}y^{\varepsilon}$  is feasible and is an  $O(\varepsilon)$ -maximizer of f.





# Primal solution: Acceleration

**Acceleration**: Combine a GD algorithm with an online learning algorithm. Progress of the former compensates instantaneous regret of the latter.



We use non-standard versions of a Gradient Descent algorithm and of a Mirror Descent algorithm by using truncated gradients.



### Primal problem

- 1. Smoothness and Lipschitz constants are bad but the objective has structure:
  - $\nabla_j f_r(x) \in [-1,\infty)$  for  $j \in [n]$ .
  - A small gradient step decreases the function value significantly:

$$\langle 
abla f_r(x), \Delta 
angle \geq f_r(x) - f_r(x - \Delta) \geq rac{1}{2} \langle 
abla f_r(x), \Delta 
angle \geq 0,$$

for  $\Delta \in \mathbb{R}^n$  satisfying the following:

$$\Delta_j \stackrel{\text{\tiny def}}{=} \frac{c_j \beta}{4(1+\beta)} \min\{\nabla_j f_r(\mathbf{x}), \mathbf{1}\}, \ \forall c_j \in [\mathbf{0}, \mathbf{1}], \forall j \in [n].$$



## Primal problem

- 1. Smoothness and Lipschitz constants are bad but the objective has structure:
  - $\nabla_j f_r(x) \in [-1,\infty)$  for  $j \in [n]$ .
  - A small gradient step decreases the function value significantly:

$$\langle \nabla f_r(x), \Delta \rangle \geq f_r(x) - f_r(x - \Delta) \geq \frac{1}{2} \langle \nabla f_r(x), \Delta \rangle \geq 0,$$

for  $\Delta \in \mathbb{R}^n$  satisfying the following:

$$\Delta_j \stackrel{\text{\tiny def}}{=} \frac{c_j \beta}{4(1+\beta)} \min\{\nabla_j f_r(\mathbf{x}), \mathbf{1}\}, \ \forall c_j \in [\mathsf{0}, \mathsf{1}], \forall j \in [n].$$

2. We run Mirror Descent on truncated losses.

$$f_r(\frac{1}{T}\sum_{i=1}^T x_i) - f_r(x^*) \leq \underbrace{\langle \overline{\nabla f_r}(x_i), x_i - x^* \rangle}_{\text{Regret}_i} + \frac{1}{T}\sum_{i=1}^T \langle \nabla f_r(x_i) - \overline{\nabla f_r}(x_i), x_i - x^* \rangle$$

The gradient step compensates the MD regret and the regret we ignored due to truncation.
 ZIB J

#### Dual Problem: The Centroid Map and a Reduction

$$\mathcal{P} \stackrel{\text{def}}{=} \{ x \in \mathbb{R}^n_{\geq 0} : Ax \leq \mathbb{1}_m \}, \qquad \qquad c(h) = \left( \frac{1}{nh_1}, \dots, \frac{1}{nh_n} \right), \\ \mathcal{D} = \operatorname{conv}\{A_i : i \in [m]\} \qquad \mathcal{D}^+ = (\operatorname{conv}\{A_i : i \in [m]\} + (-\infty, 0]^n) \cap \mathbb{R}^n_{\geq 0} \}$$



$$\min_{\boldsymbol{p} \in \boldsymbol{c}(\mathcal{D}^+)} \Big\{ \hat{\boldsymbol{g}}(\boldsymbol{p}) \stackrel{\text{\tiny def}}{=} \max_{i \in [m]} \langle \boldsymbol{A}_i, \boldsymbol{p} \rangle \Big\}.$$

ZIB

**Proposition:** If  $p = c(A^T \lambda)$  and p is an  $(\varepsilon/n)$ -minimizer of  $\hat{g}$ , then  $\lambda$  is an  $\varepsilon$ -minimizer of the dual problem g.

## Dual Problem: The PST Framework

Optimizing  $\hat{g}$  is an (approximate) linear feasibility problem: Find  $x \in c(D^+)$  such that  $Ax \leq (1 + \varepsilon)\mathbb{1}_m$ .

**PST Framework** 

- Generate a covering constraint as  $h = A^T \lambda$ , for weights  $\lambda \in \Delta^m$ .
- Use an oracle to satisfy *h*: Find  $x \in c(D^+)$  s.t.  $\langle h, x \rangle \leq 1$
- Increase the weight  $\lambda_i$  the more, the greater  $\langle A_i, x \rangle 1 \in [-\tau, \sigma]$  is, i.e., the more x does not satisfy  $A_i$  (MWs algorithm).
- Guarantees convergence in  $O(\sigma \tau / \varepsilon^2)$ .





## Improving over PST: Adaptive Oracle

The closer we are to a solution the smaller the lens  $L_{\delta}$  is.  $\Rightarrow$  the smaller  $\tau$  and  $\sigma$  are.

#### Improved strategy

- Implement an oracle that yields smaller  $\tau_{\delta}$  and  $\sigma_{\delta}$  if  $\delta$  is lower.
- Start with a  $\delta$ -minimizer of  $\hat{g}$ .
- Find a  $\delta/2$ -minimizer using the adaptive oracle and PST: It takes  $O(\tau_{\delta}\sigma_{\delta}/(\delta/2)^2)$ .
- Repeat until  $\delta < \varepsilon/n$ . Total complexity is  $O(n^2/\varepsilon)$ .



