Fast Algorithms for Packing Proportional Fairness and its Dual

David Martínez-Rubio

joint work with Francisco Criado and Sebastian Pokutta

Zuse Institute Berlin & TU Berlin

NeurIPS 2022



Berlin Mathematics Besearch Center

$\alpha\text{-}\mathsf{Fairness}$ and Proportional Fairness

$\alpha\text{-fairness:}$ a family of fair objectives

Maximize the $(1 - \alpha)$ -mean of coordinates of a point in a convex set.

- $\alpha = \mathbf{0} \Rightarrow$ arithmetic mean, maximize utility, no fairness.
- $\alpha = \mathbf{1} \Rightarrow$ geometric mean, proportional fairness.
- $\alpha \rightarrow \infty \Rightarrow$ max-min fairness.

In this work: Proportional fairness.

• Studied in economics in Nash bargaining solutions, in game theory, multi-resource allocation in compute clusters, rate control in networks.

Packing Proportional Fairness and its Dual

Packing Proportional Fairness problem, $A \in \mathcal{M}_{m \times n}(\mathbb{R}_{\geq 0})$:

$$\max_{\mathbf{x}\in\mathbb{R}^n_{\geq 0}}\left\{f(\mathbf{x})\stackrel{\text{def}}{=}\sum_{i=1}^n\log x_i:A\mathbf{x}\leq\mathbb{1}_m\right\}.$$

And its Lagrange dual is:

$$\min_{\lambda \in \Delta^m} \left\{ g(\lambda) \stackrel{\text{def}}{=} -\sum_{i=1}^n \log(A^T \lambda)_i - n \log n \right\},\,$$

• Approximate primal solution $\stackrel{_{\mathrm{fast}}}{\not \rightarrow}$ approximate dual solution.

• We design two very different algorithms for each problem.

Results and Comparison

Paper	Problem	Iterations	Width-dependence?
(Beck et al., 2014)	Primal	$O(ho^2 mn/arepsilon)$	Yes
(Marašević et al., 2016)	Primal	$\widetilde{O}(n^5/arepsilon^5)$	nearly No (polylog)
(Diakonikolas et al., 2020)	Primal	$\widetilde{O}(n^2/arepsilon^2)$	nearly No (polylog)
CMP (Theorem 5)	Primal	$\widetilde{O}(n/arepsilon)$	No
(Beck et al., 2014)	Dual	$O(\rho\sqrt{mn/\varepsilon})$	Yes
CMP (Theorem 9)	Dual	$\widetilde{O}(n^2/arepsilon)$	No

•
$$\rho \stackrel{\text{def}}{=} \frac{\max A_{ij}}{\min_{A_{ij} \neq 0} A_{ij}}$$
 is the width of the matrix.

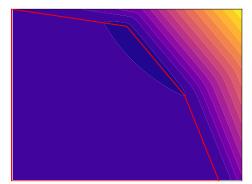
- A is a $m \times n$ matrix.
- Our algorithms: accelerated, distributed, deterministic and width-independent.

Primal problem

Reparametrize $x \rightarrow \exp(y)$ and remove constraints by adding a fast growing barrier (Diakonikolas et al, 2020):

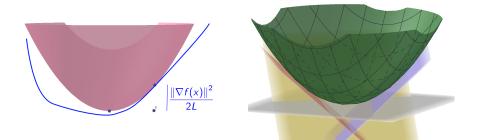
$$f_r(y) \stackrel{\text{\tiny def}}{=} -\sum_{i=1}^n y_i + \frac{\beta}{1+\beta} \sum_{i=1}^m (A \exp(y))_i^{\frac{1+\beta}{\beta}}, \text{ where } \beta \approx \frac{\varepsilon}{n \log(mn^2/\varepsilon)}.$$

Proposition: If y^{ε} is an ε -minimizer of f_r , then $\frac{1}{1+\varepsilon/n}y^{\varepsilon}$ is feasible and is an $O(\varepsilon)$ -maximizer of f.



Primal solution: Acceleration

Acceleration: Combine a GD algorithm with an online learning algorithm. Progress of the former compensates instantaneous regret of the latter.



We use non-standard versions of a Gradient Descent algorithm and of a Mirror Descent algorithm by using truncated gradients.

Primal problem

- 1. Smoothness and Lipschitz constants are bad but the objective has structure:
 - $\nabla_j f_r(x) \in [-1,\infty)$ for $j \in [n]$.
 - A small gradient step decreases the function value significantly:

$$\langle
abla f_r(x), \Delta
angle \geq f_r(x) - f_r(x - \Delta) \geq rac{1}{2} \langle
abla f_r(x), \Delta
angle \geq 0,$$

for $\Delta \in \mathbb{R}^n$ satisfying the following:

$$\Delta_j \stackrel{\text{\tiny def}}{=} \frac{c_j \beta}{4(1+\beta)} \min\{\nabla_j f_r(\mathbf{x}), \mathbf{1}\}, \ \forall c_j \in [\mathbf{0}, \mathbf{1}], \forall j \in [n].$$

Primal problem

- 1. Smoothness and Lipschitz constants are bad but the objective has structure:
 - $\nabla_j f_r(x) \in [-1,\infty)$ for $j \in [n]$.
 - A small gradient step decreases the function value significantly:

$$\langle \nabla f_r(x), \Delta \rangle \geq f_r(x) - f_r(x - \Delta) \geq \frac{1}{2} \langle \nabla f_r(x), \Delta \rangle \geq 0,$$

for $\Delta \in \mathbb{R}^n$ satisfying the following:

$$\Delta_j \stackrel{\text{\tiny def}}{=} \frac{c_j \beta}{4(1+\beta)} \min\{\nabla_j f_r(\mathbf{x}), \mathbf{1}\}, \ \forall c_j \in [\mathsf{0}, \mathsf{1}], \forall j \in [n].$$

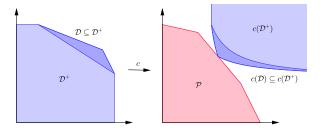
2. We run Mirror Descent on truncated losses.

$$f_r(\frac{1}{T}\sum_{i=1}^T x_i) - f_r(x^*) \leq \underbrace{\langle \overline{\nabla f_r}(x_i), x_i - x^* \rangle}_{\text{Regret}_i} + \frac{1}{T}\sum_{i=1}^T \langle \nabla f_r(x_i) - \overline{\nabla f_r}(x_i), x_i - x^* \rangle$$

The gradient step compensates the MD regret and the regret we ignored due to truncation.
 ZIB J

Dual Problem: The Centroid Map and a Reduction

$$\mathcal{P} \stackrel{\text{def}}{=} \{ x \in \mathbb{R}^n_{\geq 0} : Ax \leq \mathbb{1}_m \}, \qquad \qquad c(h) = \left(\frac{1}{nh_1}, \dots, \frac{1}{nh_n} \right), \\ \mathcal{D} = \operatorname{conv}\{A_i : i \in [m]\} \qquad \mathcal{D}^+ = (\operatorname{conv}\{A_i : i \in [m]\} + (-\infty, 0]^n) \cap \mathbb{R}^n_{\geq 0} \}$$



$$\min_{\boldsymbol{p} \in \boldsymbol{c}(\mathcal{D}^+)} \Big\{ \hat{\boldsymbol{g}}(\boldsymbol{p}) \stackrel{\text{\tiny def}}{=} \max_{i \in [m]} \langle \boldsymbol{A}_i, \boldsymbol{p} \rangle \Big\}.$$

ZIB

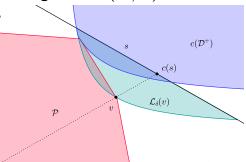
Proposition: If $p = c(A^T \lambda)$ and p is an (ε/n) -minimizer of \hat{g} , then λ is an ε -minimizer of the dual problem g.

Dual Problem: The PST Framework

Optimizing \hat{g} is an (approximate) linear feasibility problem: Find $x \in c(D^+)$ such that $Ax \leq (1 + \varepsilon)\mathbb{1}_m$.

PST Framework

- Generate a covering constraint as $h = A^T \lambda$, for weights $\lambda \in \Delta^m$.
- Use an oracle to satisfy *h*: Find $x \in c(D^+)$ s.t. $\langle h, x \rangle \leq 1$
- Increase the weight λ_i the more, the greater $\langle A_i, x \rangle 1 \in [-\tau, \sigma]$ is, i.e., the more x does not satisfy A_i (MWs algorithm).
- Guarantees convergence in $O(\sigma \tau / \varepsilon^2)$.



Improving over PST: Adaptive Oracle

The closer we are to a solution the smaller the lens L_{δ} is. \Rightarrow the smaller τ and σ are.

Improved strategy

- Implement an oracle that yields smaller τ_{δ} and σ_{δ} if δ is lower.
- Start with a δ -minimizer of \hat{g} .
- Find a $\delta/2$ -minimizer using the adaptive oracle and PST: It takes $O(\tau_{\delta}\sigma_{\delta}/(\delta/2)^2)$.
- Repeat until $\delta < \varepsilon/n$. Total complexity is $O(n^2/\varepsilon)$.

