Surprise Minimizing Multi-Agent Learning with Energy-Based Models

Karush Suri

Xiao Qi Shi

Kostas Plataniotis

Yuri Lawryshyn

Surprise in Multi-Agent Learning

• Sudden Environmental changes impact agent behavior

• Uncertainty due to abrupt temporal changes

- Surprising states grow with the number of agents
- What if we treat surprise as energy and minimize it?

An Energy-Based Approach

- Map surprise to an energy landscape and seek the minima
- Utilise energy operator as a contraction on the surprise value function

Theorem 1. Given a surprise value function $V_{surp}^{a}(s, u, \sigma) \ \forall a \in N$, the energy operator $\mathcal{T}V_{surp}^{a}(s, u, \sigma) = \log \sum_{a=1}^{N} \exp \left(V_{surp}^{a}(s, u, \sigma)\right)$ forms a contraction on $V_{surp}^{a}(s, u, \sigma)$.

$$\hat{Q}(u,s;\theta) = Q(u,s;\theta) + \beta \log \sum_{a=1}^{N} \exp\left(V_{\text{surp}}^{a}(s,u,\sigma)\right)$$

Penalize Q values if high energy (surprise)

Energy-Based Surprise Minimization: EMIX

Key Results

Scenarios	EMIX	SMiRL-QMIX	QMIX	VDN	COMA	IQL
3m	94.90±0.39	$93.94{\pm}0.22$	$93.43 {\pm} 0.20$	$94.58 {\pm} 0.58$	84.75 ± 7.93	$94.79 {\pm} 0.50$
3s_vs_4z	97.22±0.73	$0.24{\pm}0.11$	96.01±3.93	$94.29 {\pm} 2.13$	$0.00 {\pm} 0.00$	59.75±12.22
8m_vs_9m	71.03±2.69	69.90 ± 1.94	$68.28 {\pm} 2.30$	$58.81 {\pm} 4.68$	$4.17 {\pm} 0.58$	$28.48 {\pm} 22.38$
10m_vs_11m	$75.35 {\pm} 2.30$	$77.85{\pm}2.02$	$70.36 {\pm} 2.87$	$71.81{\pm}6.50$	4.55 ± 0.73	$32.27 {\pm} 25.68$
so_many_baneling	95.87±0.16	93.61 ± 0.94	$93.35 {\pm} 0.78$	92.26 ± 1.06	$91.65 {\pm} 2.26$	74.97 ± 6.52
5m_vs_6m	$\textbf{37.07}{\pm}\textbf{2.42}$	$33.27 {\pm} 2.79$	$34.42{\pm}2.63$	$35.63 {\pm} 3.32$	$0.52{\pm}0.13$	$14.78 {\pm} 2.72$

Qualitative Analysis

Thank You

