Distributed Inverse Constrained Reinforcement Learning (D-ICRL) for Multi-agent Systems (MASs)

Shicheng Liu & Minghui Zhu

The Pennsylvania State University

Neural Information Processing Systems 2022

S. Liu & M. Zhu (Penn State)

D-ICRL for MASs

NeurIPS 2022

Distributed inverse constrained reinforcement learning

Reward function

D-ICRL for MASs

< 47 ▶

Distributed inverse constrained reinforcement learning

Reward function

Constraints

Distributed demonstrations

D-ICRL for MASs

< ∃⇒

Distributed inverse constrained reinforcement learning

Reward function

Constraints

Distributed demonstrations

< A IN

• D-ICRL: Solve the three challenges at once.

D-ICRL for MASs

Model: Multiple experts & multiple learners

N_E cooperative experts: {r_E = ω^T_{rE}φ_r, c_E = ω^T_{cE}φ_c} ⇒ D = {D^[v]}^{N_L}_{v=1}
N_L collaborative learners: {D^[v] = {ζ^j}^{m[v]}_{i=1}, φ_r, φ_c} ⇒ {ω_r, ω_c}

Distributed bi-level optimization formulation

Distributed bi-level optimization formulation

$$\max_{\omega_c \in \Omega_c} F(\omega_c, \eta^*(\omega_c)) = \sum_{\nu=1}^{N_L} F^{[\nu]}(\omega_c, \eta^*(\omega_c)), \quad \text{(outer level)}$$

s.t. $\eta^*(\omega_c) = \arg\min_{\eta} \sum_{\nu=1}^{N_L} m^{[\nu]} G^{[\nu]}(\eta; \omega_c).$ (inner level)

- The outer level learns constraints by maximizing the log likelihood $\sum_{\nu=1}^{N_L} F^{[\nu]}$ of the demonstrations.
- Given a constraint estimate ω_c , the inner level learns the corresponding reward function and policy by minimizing the dual function $\sum_{v=1}^{N_L} m^{[v]} G^{[v]}$ of maximum causal entropy (MCE).

Method

A perspective of double-loop learning

- Double-loop communication: sharing reward and cost function parameters
- Inner communication (faster): $W^{[vv']}(k)$ and $\mathcal{N}^{[v]}(k)$.
- Outer communication (slower): $\overline{W}^{[vv']}(n)$ and $\overline{\mathcal{N}}^{[v]}(n)$.

Method

Inner process

- Receives $\eta^{[v']}(k)$ from neighbor $v' \in \mathcal{N}^{[v]}(k)$.
- $\eta^{[v]}(k+1) = \sum_{v'=1}^{N_L} W^{[vv']}(k) \eta^{[v']}(k) \alpha(k) m^{[v]} \nabla_{\eta} G^{[v]}(\eta^{[v]}(k);\omega_c)$
- Runs K iterations

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Outer process

- Difficulties
 - Local gradient $\nabla F^{[v]}(\omega_c, \eta^*(\omega_c))$ inaccessible.
 - global gradient $\nabla F(\omega_c, \eta^*(\omega_c))$ inaccessible.
 - $F(\omega_c, \eta^*(\omega_c))$ non-convex.

- 4 回 ト 4 三 ト 4 三 ト

Outer process

- Difficulties
 - Local gradient $\nabla F^{[v]}(\omega_c, \eta^*(\omega_c))$ inaccessible.
 - global gradient $\nabla F(\omega_c, \eta^*(\omega_c))$ inaccessible.
 - $F(\omega_c, \eta^*(\omega_c))$ non-convex.
- Our solutions
 - Local gradient approximation ∇
 ^Γ
 ^[ν](ω_c, η
 ^[ν](ω_c)).
 - Global gradient tracking $\bar{\nabla}^{[v]}(n) = \sum_{v=1}^{N_l} \bar{W}^{[vv']}(n) \bar{\nabla}^{[v']}(n-1) + \bar{\nabla}F^{[v]}(\omega_c^{[v]}(n), \bar{\eta}^{[v]}(\omega_c^{[v]}(n))) \bar{\nabla}F^{[v]}(\omega_c^{[v]}(n-1), \bar{\eta}^{[v]}(\omega_c^{[v]}(n-1))).$

• Successive convex approximation

$$\tilde{\omega}_{c}^{[v]}(n) = \operatorname{Project}_{\Omega_{c}}(\omega_{c}^{[v]}(n) + N_{L}\overline{\nabla}^{[v]}(n)).$$

Outer process

- Difficulties
 - Local gradient $\nabla F^{[v]}(\omega_c, \eta^*(\omega_c))$ inaccessible.
 - global gradient $\nabla F(\omega_c, \eta^*(\omega_c))$ inaccessible.
 - $F(\omega_c, \eta^*(\omega_c))$ non-convex.
- Our solutions
 - Local gradient approximation $\overline{\nabla} F^{[v]}(\omega_c, \overline{\eta}^{[v]}(\omega_c))$.
 - Global gradient tracking $\bar{\nabla}^{[v]}(n) = \sum_{v=1}^{N_L} \bar{W}^{[vv']}(n) \bar{\nabla}^{[v']}(n-1) + \bar{\nabla}F^{[v]}(\omega_c^{[v]}(n), \bar{\eta}^{[v]}(\omega_c^{[v]}(n))) \bar{\nabla}F^{[v]}(\omega_c^{[v]}(n-1), \bar{\eta}^{[v]}(\omega_c^{[v]}(n-1))).$

• Successive convex approximation

$$\tilde{\omega}_{c}^{[v]}(n) = \operatorname{Project}_{\Omega_{c}}(\omega_{c}^{[v]}(n) + N_{L}\overline{\nabla}^{[v]}(n))$$

• Update rule: $\omega_c^{[\nu]}(n+1) = \sum_{\nu'=1}^{N_L} \left[\beta(n) \tilde{\omega}_c^{[\nu']}(n) + (1-\beta(n)) \omega_c^{[\nu']}(n) \right]$

Theoretical guarantee

Convergence rate of inner problem

Suppose $\alpha(k) = \frac{\alpha}{k+1}$ where α is a positive constant, it holds for any learner v and $\omega_c \in \Omega_c$ that

$$||ar{\eta}^{[v]}(\omega_c) - \eta^*(\omega_c)|| \leq O(rac{1}{\sqrt{\log K}})$$

Asymptotic convergence of outer problem

Suppose $\beta(n) \in (0, 1)$, $\sum_{n=0}^{\infty} \beta(n) = +\infty$, and $\sum_{n=0}^{\infty} \beta(n)^2 < +\infty$, it holds for any learner v that

$$\lim_{n \to \infty} \max_{v, v'} ||\omega_c^{[v]}(n) - \omega_c^{[v']}(n)|| = 0,$$

$$\lim_{n \to \infty} \sup(\nabla F(\omega_c^{[v]}(n), \eta^*(\omega_c^{[v]}(n))))^\top(\omega_c - \omega_c^{[v]}(n)) \le O(\frac{1}{\sqrt{\log K}})$$

Result

Simulations

Discrete environment

Ground truth environment

Learned environment

S. Liu & M. Zhu (Penn State)

Continuous environment

D-ICRL can successfully imitate the experts and recover the constraints.

D-ICRL for MASs

9 / 10

Conclusion

- Solve three challenges at once: Reward function, constraints, and distributed data.
- Formulate as a distributed bi-level optimization problem.
- D-ICRL: Theoretical framework effective to continuous and discrete environments empirically.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A