Sampling from Log-Concave Distributions with Infinity-Distance Guarantees

NeurIPS 2022

Problem setting

Input: Polytope $K \coloneqq \{\theta \in R^d : A\theta \le b\}$, $A \in R^{m \times d}, b \in R^m$, $B(0,r) \subseteq K \subseteq B(0,R)$ some R,r > 0Convex function $f: K \to R$

Goal: Generate a sample from a distribution ν which is ε -close to $\pi(\theta) \propto e^{-f(\theta)}$ in infinity distance: $d_{\infty}(\pi, \nu) \coloneqq \sup_{\theta \in K} \left| \log \frac{\nu(\theta)}{\pi(\theta)} \right| < \varepsilon$

We consider the setting where f is L-Lipschitz for some L > 0

- Sampling from log-concave distributions on K is a fundamental problem in Computer Science and Machine learning, with many applications to optimization, integration, Bayesian inference, etc.
- Infinity-distance gives stronger guarantees: Implies bounds on weaker metrics, including Total Variation (TV), KL-divergence, and α -Renyi divergence distances for $\alpha > 0$
- Many applications to differentially private (DP) optimization, e.g.
 - Convex DP empirical risk minimization
 - DP matrix approximation and PCA

Differentially private optimization

- **Applications:**
- Medical data
- Census data
- etc.
- Data may contain sensitive information about individuals
- Many examples of privacy breaches (e.g. Netflix problem)
- Need algorithms which output ML model parameters heta that hide private information, while still allowing researchers to learn from the data

Pure *E*-differential privacy (DP) [Dwork, '06]:

Given $\varepsilon > 0$, a randomized mechanism \mathcal{A} is ε -DP if for any neighboring datasets $x, x' \in D$, $\mathbb{P}[\mathcal{A}(x) \in S] \leq \exp(\varepsilon) \times \mathbb{P}[\mathcal{A}(x') \in S]$

(x, x' are "neighbors" if they differ by at most one datapoint)

DP optimization problems can be reduced to sampling from exponential mechanism of [McSherry, Talwar, '07]: Sample from $\pi(\theta) \propto e^{-\frac{\varepsilon}{\Delta}f(\theta;x)}$, where $\Delta \coloneqq \sup_{\theta,x,x'} |f(\theta;x) - f(\theta;x')|$ Need to sample from exponential mechanism with infinity distance error $O(\varepsilon)$ to ensure output is pure ε -DP

Previous work

Sampling from log-concave π , within TV distance arepsilon > 0:

- Hit-and-run Markov chain [Lovasz, Vempala '06]: $O(d^{4.5}\log\frac{d}{\epsilon r})$ calls to oracle for f and membership oracle for convex body K, from a cold start
- Dikin walk Markov chain [Narayanan, Rakhlin '17]: $O(md^{+\omega} + md^{2+\omega}L^2R^2)\log\frac{w}{\varepsilon})$ arithmetic operations, from a *w*-warm start, if *K* polytope given by *m* inequalities ($\omega \le 2.31$ is matrix multiplication exponent)

Sampling from log-concave π , within infinity distance arepsilon>0:

- [Bassily, Smith, Thakurta '14], using grid walk of [Applegate, Kannan '91]:
- $\tilde{O}\left(\frac{1}{r^2} d^{10} + d^6 LR\right)$ calls to oracle for f and membership oracle for K
 - $\frac{1}{\epsilon^2}$ dependence because need grid of size $\frac{1}{\epsilon}$ to sample within infinity distance $O(\epsilon)$

Can one use a continuous-space Markov chain to sample within $O(\varepsilon)$ infinity distance of π , with runtime <u>logarithmic</u> in $\frac{1}{s}$?

Main Results

Theorem: There is an algorithm which, given $\varepsilon, L, R > 0$, a polytope $K \subseteq B(0, R)$ given by m inequalities, and an oracle for an L-Lipschitz $f: K \to R$, returns a point $O(\varepsilon)$ -close in infinity distance to $\pi \propto e^{-f}$, in $O(T \times md^{\omega-1})$ arithmetic operations plus O(T) evaluations of f, where $T = (m^2d^3 + m^2dL^2R^2) \times [LR + d\log\frac{LRD}{r\varepsilon}]$.

• Improves by $\frac{1}{m^3 \varepsilon^2} d^{8-\omega}$ on the $\tilde{O}\left(\frac{1}{\varepsilon^2} d^{11} + d^7 LR\right)$ runtime of [Bassily, Smith, Thakurta '14] for sampling within $O(\varepsilon)$ infinity distance of log-Lipschitz π on polytope K. In particular, improves runtime from polynomial-in- $\frac{1}{\varepsilon}$ to logarithmic-in- $\frac{1}{\varepsilon}$.

• Corollary (ε -DP empirical risk minimization (ERM)): Plugging into exponential mechanism, get algorithm for minimizing $\sum_{i=1}^{n} f(\theta; x_i)$ under ε -DP for convex L-Lipschitz f on polytope K with optimal excess utility $E_{\widehat{\theta}}[f(\widehat{\theta}, x) - f(\theta, x)] \leq O\left(\frac{dLR}{\varepsilon}\right)$, in $(m^2d^3 + m^2dn^2\varepsilon^2) \times (\varepsilon n + d)\log^2(\frac{nRd}{r\varepsilon}) \times md^{\omega-1}$ artihmetic operations

• Improves by $\frac{d^{8-\omega}}{\varepsilon^2 m^2}$ on runtime of [Bassily, Smith, Thakurta '14], for ε -DP convex L-Lipschitz empirical risk minimization on polytope K

• **Corollary** (ε -DP low rank approximation): Plugging into mechanism of [Leake, McSwiggen, Vishnoi '21], get algorithm for ε -DP rank-k matrix approximation with best-known utility, with $logarithmic-in-\frac{1}{\varepsilon}$ runtime (improving on *polynomial-in-\frac{1}{\varepsilon}* for the previous implementation of their mechanism).

Algorithm: From TV-bounds to infinity-distance bounds Input: membership oracle for convex body $K \subseteq B(0, R)$

Input: sampling oracle for continuous-space distribution μ on K s.t. $||\pi - \mu||_{TV} \leq \delta$

- 1. Sample a point $\theta \sim \mu$
- 2. Set $Z \leftarrow \theta + \Delta r \xi$, where $\xi \sim \text{Unif}(B(0,1))$

Smooth μ by convolving μ with uniform noise on a small ball Points near corners of K are much less likely to be sampled, since (e.g., if K is a cube) only $\frac{1}{2^d}$ of ball near a corner falls inside K3. Set $\hat{\theta} \leftarrow \frac{1}{1-\Delta}Z$

"Stretch" K to remove samples originating near boundary

4. If $\hat{\theta} \in K$, output $\hat{\theta}$ otherwise, go back to step 1

Main technical lemma: Given: ε , L, R > 0, L-Lipschitz $f: K \rightarrow R$, and

- a membership oracle for a convex body $K \subseteq B(0, R)$,
- an oracle which returns a sample from a continuous distribution μ on K within TV distance $\delta \leq \varepsilon \left(\frac{R(d+LR)^2}{\varepsilon r}\right)^{-d} e^{-LR}$ of $\pi \propto e^{-f}$, our algorithm outputs point $O(\varepsilon)$ -close in infinity distance to π , in O(1) calls to oracles.

Plug in sample $O(\delta)$ -close to π in TV distance generated by continuous-space Markov chain with **logarithmic**-in- $\frac{1}{\delta}$ runtime (e.g. Dikin walk for polytopes; hit-and-run for more general convex bodies) to obtain point $O(\varepsilon)$ -close to π in infinity distance, in **logarithmic**-in- $\frac{1}{\varepsilon}$ runtime.

Conclusion

Introduced new method of converting TV-bounded samples from Lipschitz log-densities π on convex bodies, which can be generated by continuous-space Markov chains, into samples with bounded infinity distance to π :

- Improves runtime for generating sample $O(\varepsilon)$ -close in infinity distance from Lipschitz logconcave distribution π on polytope K by $\frac{1}{m^3\varepsilon^2}d^{8-\omega}$
 - In particular, improves runtime from polynomial-in- $\frac{1}{s}$ to **logarithmic**-in- $\frac{1}{s}$
 - Can also get logarithmic-in- $\frac{1}{\varepsilon}$ runtime for general convex bodies K
- Application to differentially private optimization:
 - Improves by factor of $\frac{d^{8-\omega}}{\varepsilon^2 m^2}$ the runtime to obtain optimal utility for ε -DP convex L-Lipschitz empirical risk minimization (ERM) on polytope.
 - Also obtain improved runtimes for ε-DP ERM on more general convex bodies, and for ε-DP matrix approximation problems

Open problem: Can one sample within $O(\varepsilon)$ infinity distance of any log-concave distribution on K with runtime independent of Lipschitz constant L?

Thanks!