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Problem setting
Input: Polytope 𝐾 ≔ 𝜃 ∈ 𝑅! ∶ 𝐴𝜃 ≤ 𝑏 , 𝐴 ∈ 𝑅"×!, 𝑏 ∈ 𝑅" ,
𝐵 0, 𝑟 ⊆ 𝐾 ⊆ 𝐵 0, 𝑅 some  𝑅, 𝑟 > 0
Convex function 𝑓: 𝐾 → 𝑅
Goal: Generate a sample from a distribution 𝜈 which is 𝜀-close to  

𝜋 𝜃 ∝ 𝑒!"($) in infinity distance:    𝑑& 𝜋, 𝜈 ≔ sup
$∈(

log ) $
* $ < 𝜀

We consider the setting where 𝑓 is L-Lipschitz for some 𝐿 > 0
• Sampling from log-concave distributions on K is a fundamental 

problem in Computer Science and Machine learning, with many 
applications to optimization, integration, Bayesian inference, etc.

• Many applications to differentially private (DP) optimization, e.g.
• Convex DP empirical risk minimization
• DP matrix approximation and PCA

• Infinity-distance gives stronger guarantees: Implies bounds on 
weaker metrics, including Total Variation (TV), KL-divergence, and 
𝛼-Renyi divergence distances for 𝛼 > 0



Differentially private optimization
Applications:
• Medical data
• Census data
• etc.

• Data may contain sensitive information about individuals
• Many examples of privacy breaches (e.g. Netflix problem)
• Need algorithms which output ML model parameters 𝜃 that hide private information, 

while still allowing researchers to learn from the data

Pure 𝜺-differential privacy (DP) [Dwork, ‘06]:
Given 𝜀 > 0, a randomized mechanism 𝒜 is 𝜀-DP if for any neighboring 
datasets 𝑥, 𝑥+ ∈ 𝐷,  ℙ 𝒜 𝑥 ∈ 𝑆 ≤ exp 𝜀 ×ℙ 𝒜 𝑥+ ∈ 𝑆
(𝑥, 𝑥′ are “neighbors” if they differ by at most one datapoint)
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DP optimization problems can be reduced to sampling from exponential 
mechanism of [McSherry, Talwar, ‘07]:
Sample from 𝜋(𝜃) ∝ 𝑒!

!
""($;0),   where Δ ≔ sup

,%,&,&!
|𝑓 𝜃; 𝑥 − 𝑓(𝜃; 𝑥') |

Need to sample from exponential mechanism with infinity distance 
error 𝑂(𝜀) to ensure output is pure 𝜀-DP



Previous work
Sampling from log-concave 𝝅, within TV distance 𝜺 > 𝟎:

• Hit-and-run Markov chain [Lovasz, Vempala ‘06]: 𝑂(𝑑1.3 log 4
5 6) calls to 

oracle for 𝑓 and membership oracle for convex body 𝐾, from a cold 
start
• Dikin walk Markov chain [Narayanan, Rakhlin ‘17]:  𝑂(

)
𝑚𝑑78 +

𝑚𝑑978𝐿9𝑅9 log:5 ) arithmetic operations, from a 𝑤-warm start, if 𝐾
polytope given by 𝑚 inequalities  (𝜔 ≤ 2.31 is matrix multiplication exponent)

Can one use a continuous-space Markov chain to sample within 𝑂(𝜀)
infinity distance of 𝜋, with runtime logarithmic in ;

5
?

𝐾

Sampling from log-concave 𝝅, within infinity distance 𝜺 > 𝟎:
• [Bassily, Smith, Thakurta ‘14], using grid walk of [Applegate, Kannan ‘91]:
@𝑂 𝟏

𝜺𝟐 𝑑
*+ + 𝑑,𝐿𝑅 calls to oracle for 𝑓 and membership oracle for 𝐾

• *
-#

dependence because need grid of size *
-

to sample within infinity distance 𝑂 𝜀



Main Results

• Improves by *
"$-#

𝑑./0 on the  !𝑂 𝟏
𝜺𝟐
𝑑'' + 𝑑(𝐿𝑅 runtime of [Bassily, Smith, Thakurta ‘14] for 

sampling within 𝑂(𝜀) infinity distance of log-Lipschitz 𝜋 on polytope 𝐾.
In particular, improves runtime from polynomial-in-*

-
to logarithmic-in-*

-
.

Theorem: There is an algorithm which, given 𝜀, 𝐿, 𝑅 > 0, a polytope 𝐾 ⊆ 𝐵(0, 𝑅)
given by 𝑚 inequalities, and an oracle for an 𝐿-Lipschitz 𝑓:𝐾 → 𝑅, returns a point 
𝑂 𝜀 -close in infinity distance to 𝜋 ∝ 𝑒/1, in 𝑂 𝑇 ×𝑚𝑑0/* arithmetic operations plus 
𝑂 𝑇 evaluations of 𝑓, where 𝑇 = (𝑚2𝑑3 +𝑚2𝑑𝐿2𝑅2)×[𝐿𝑅 + 𝑑 log 456

7-
].

• Corollary (𝜺-DP empirical risk minimization (ERM)): Plugging into exponential mechanism, 
get algorithm for minimizing ∑#$%& 𝑓(𝜃; 𝑥#) under 𝜀-DP for convex L-Lipschitz 𝑓 on polytope 𝐾
with optimal excess utility E'( f -𝜃, 𝑥 − f 𝜃, 𝑥 ≤ 𝑂 )*+

,
,    in (𝑚-𝑑. +𝑚-𝑑𝑛-𝜀-)×(

)

𝜀𝑛 +

𝑑 log-(&+)
/,
)× 𝑚𝑑01% artihmetic operations

• Improves by !
)*+

-#"# on runtime of [Bassily, Smith, Thakurta ‘14], for 𝜺-DP convex 𝐿-Lipschitz 
empirical risk minimization on polytope 𝐾
• Corollary (𝜺-DP low rank approximation ): Plugging into mechanism of [Leake, McSwiggen, 
Vishnoi ‘21], get algorithm for 𝜺-DP rank-𝑘 matrix approximation with best-known utility, with 
logarithmic-in-%

,
runtime (improving on polynomial-in-%

,
for the previous implementation of 

their mechanism).



Algorithm: From TV-bounds to infinity-distance bounds

Main technical lemma: Given: 𝜀, 𝐿, 𝑅 > 0, 𝐿-Lipschitz  𝑓:𝐾 → 𝑅, and
• a membership oracle for a convex body 𝐾 ⊆ 𝐵 0, 𝑅 ,
• an oracle which returns a sample from a continuous distribution 𝜇 on K within TV 

distance 𝛿 ≤ 𝜀 ! "#$! !

%&

'"
𝑒'$! of 𝜋 ∝ 𝑒/1 ,

our algorithm outputs point 𝑂 𝜀 -close in infinity distance to 𝜋, in 𝑂(1) calls to oracles.

Input: membership oracle for convex body 𝐾 ⊆ 𝐵 0, 𝑅
Input: sampling oracle for continuous-space distribution 𝜇 on 𝐾 s.t. | 𝜋 − 𝜇 |89 ≤ 𝛿
1. Sample a point 𝜃 ∼ 𝜇
2. Set 𝑍 ← 𝜃 + Δ𝑟𝜉,  where 𝜉 ∼ Unif(B(0,1))
Smooth 𝜇 by convolving 𝜇 with uniform noise on a small ball
Points near corners of 𝐾 are much less likely to be sampled, since                                      
(e.g., if 𝐾 is a cube) only *

2,
of ball near a corner falls inside 𝐾

3. Set 𝜃̀ ← *
*/:

𝑍
“Stretch” 𝐾 to remove samples originating near boundary
4. If 𝜃̀ ∈ 𝐾, output 𝜃̀ otherwise, go back to step 1

𝐾

Plug in sample 𝑂(𝛿)-close to 𝜋 in TV distance generated by continuous-space Markov chain 
with logarithmic-in-*

;
runtime (e.g. Dikin walk for polytopes; hit-and-run for more general 

convex bodies) to obtain point 𝑂(𝜀)-close to 𝜋 in infinity distance, in logarithmic-in-*
-

runtime.



Conclusion
Introduced new method of converting TV-bounded samples from Lipschitz 
log-densities 𝜋 on convex bodies, which can be generated by continuous-
space Markov chains, into samples with bounded infinity distance to 𝜋:
• Improves runtime for generating sample 𝑂 𝜀 -close in infinity distance from 

Lipschitz logconcave distribution 𝜋 on polytope 𝐾 by *
"$-#

𝑑./0

• In particular, improves runtime from polynomial-in-'
(

to logarithmic-in-'
(

• Can also get logarithmic-in-;5 runtime for general convex bodies 𝐾

• Application to differentially private optimization:

• Improves by factor of !
234

"5#5 the runtime to obtain optimal utility for 𝜺-
DP convex 𝐿-Lipschitz empirical risk minimization (ERM) on polytope.

• Also obtain improved runtimes for 𝜺-DP ERM on more general convex 
bodies, and for 𝜺-DP matrix approximation problems

Open problem: Can one sample within 𝑂 𝜀 infinity distance of any log-
concave distribution on 𝐾 with runtime independent of Lipschitz constant 𝐿?

7Thanks! 


