

Entropy-Driven Mixed-Precision Quantization for Deep Network Design

Zhenhong Sun, Ce Ge, Junyan Wang, Ming Lin, Hensen Chen, Hao Li and Xiuyu Sun

Zhenhong Sun Algorithm Engineer DAMO Academy, Alibaba Group E:zhenhongsun1992@outlook.com

Contact Xiuyu by DingTalk Contact Xiuyu by WeChat

Outline

✓Motivation

- ✓ Quantization Entropy Score
 - o Overall
 - Full-precision model
 - Mixed-precision model
 - Gaussian Calibration
 - o QBR
- ✓ Experimental Results
- ✓Conclusion

Motivation

✓ On IoT devices, <u>limited SRAM memory and Flash storage</u> are the major constraints for deploying models. A SOTA ARM Cortex-M7 MCU merely has <u>512kB SRAM and 2MB Flash</u>.

- ✓ Typically, full-precision MobileNetV2 consumes 5.6M peak memory and 13.5M storage, and INT8 model consumes 1.4M peak memory and 3.4M storage.
- \checkmark The resource utilization of fixed-precision quantization is not high in some stages.

Motivation

ECAlibaba Group 阿里巴巴集団

Table 1: TOP-1 ACC of fixed-precision MobileNetV2 models on ImageNet with 120 training epochs. Bold values meet the 512KB SRAM limit, and underline values meet the 2MB Flash limit.

Activation	Weight Bit								
Bit	2	3	4	5	6	8			
3	<u>47.43</u>	59.38	62.78	63.59	64.06	64.28			
4	<u>55.54</u>	64.74	67.78	68.50	68.59	68.94			
5	<u>56.66</u>	66.31	69.23	69.75	69.99	70.25			
6	<u>57.73</u>	66.62	69.11	70.00	70.07	70.48			
8	<u>57.89</u>	66.69	69.25	70.02	70.17	70.60			

Figure 3: Peak memory and model size of fixed-precision MobileNetV2 models.

✓ Thus, deploying model on IoT devices needs much lower bit precision quantization.

✓ Lower bit precision lower accuracy. "A3W2" model fits both 512KB memory limit and 2MB storage limit.

✓ Mixed-precision quantization with NAS can use <u>lower bit on tight-resource position and higher bit on rich-</u> resource position to promote the deloyment.

Quantization Entropy---Overall

 Our proposed strategy for deep network design consists of three modules, including quantization entropy score, Gaussian initialization calibration, and resource maximization.

Quantization Entropy--Full-Precision Models

- ✓ Regard a deep neural network as an information system, and the differential entropy of the last output feature map represents the expressiveness.
- ✓ The differential entropy of a Gaussian distribution only depends on Variance.

$$H(x) = \int_{-\infty}^{+\infty} -\log(p(x))p(x) \, dx \quad \propto \log(\sigma^2), \tag{1}$$

✓ The L-layer's expectation and variance without quantization:

$$\mathbb{E}(\boldsymbol{x}_{i}^{l}) = 0, \quad \sigma^{2}(\boldsymbol{x}_{i}^{l}) = \sum_{h=1}^{K_{h}^{l}} \sum_{w=1}^{K_{w}^{l}} \sum_{c=1}^{C^{l-1}} \left[\sigma^{2}(\boldsymbol{x}_{chw}^{l-1}) \times \sigma^{2}(\boldsymbol{W}_{chw}^{l}) \right].$$
(4)

✓ Next, we will explore how to introduce mixed-precision quantization into the calculation process.

Quantization Entropy--Mixed-Precision Models

Figure 4: $N = \{2, 4, 8\}$ bit quantization on Gaussian variable. The upper and lower bounds represent truncation. Shaded areas represent quantization.

Table 2: Look up table of $\hat{\sigma}(N)$ according to σ and N bit. Low-precision leads to small variance.

	N Bit Precision									
σ	2	3	4	5	6	7	8			
1	1.00	1.04	1.04	1.04	1.04	1.04	1.04			
2	1.47	1.94	2.02	2.02	2.02	2.02	2.02			
4	1.73	2.89	3.85	4.01	4.01	4.01	4.01			
6	1.82	3.26	5.04	5.96	6.00	6.00	6.00			

✓ We need to insert low-precision function behind Gaussian initialized input and weights.

✓ According to Fig. 4, the quantization of Gaussian variable will decrease the variance of the input, which is the reason of quantization loss.

✓ The decreased quantization standard deviation $\hat{\sigma}(N)$ is demonstrated in Table 2.

aba Group

Quantization Entropy--Mixed-Precision Models

8

✓ Thus we consider to refine entropy score to distinguish the different bits loss. We adopt a scaling parameter to normalize the input to σ_A :

$$\sigma^{2}(\boldsymbol{x}_{i}^{l}) = \sum_{h=1}^{K_{h}^{l}} \sum_{w=1}^{K_{w}^{l}} \sum_{c=1}^{C^{l-1}} \left[\hat{\sigma}^{2}(N_{x}^{l-1}) \times \hat{\sigma}^{2}(N_{W}^{l}) \right] \times \sigma_{S}^{2}(\boldsymbol{x}_{chw}^{l-1}), \quad \sigma_{S}^{2}(\boldsymbol{x}_{chw}^{l-1}) = \sigma^{2}(\boldsymbol{x}_{chw}^{l-1})/\sigma_{A}^{2}.$$
(7)

✓ Finally form the Quantization Entropy Score (QE-Score) to measure quantization loss:

$$H(\mathcal{F}) \propto \sum_{l=1}^{L} \log \left[K_h^l K_w^l C^{l-1} \hat{\sigma}^2 (N_x^{l-1}) \hat{\sigma}^2 (N_W^l) / \sigma_A^2 \right] + \log(\sigma_A^2), \tag{9}$$

✓ QE-Score depends on the structural parameters, quantization precision, and initial standard deviation σ_A and σ_W . Next, we will show how to determine σ_A and σ_W .

Quantization Entropy-- Gaussian Calibration

9

✓ Use MobileNetV2 architecture with fixed-precisions to calibrate the accuracy and score.

✓ When gradually increasing the values of σ_A and σ_W , QE-Scores are gradually positive correlated with accuracy. $\sigma_A = 5$ and $\sigma_W = 4$ can rank the diversity of activations and weights on accuracy.

Quantization Entropy--QBR

ECAlibaba Group
阿里巴巴集団

10

✓ Finally, to maximize the resource utilization, we use Quantization Bits Refinement (QBR) strategy to redistributes the mixed-precisions.

✓ Given a cadidate structure, we scale the mixed-precision of activations to make the peak memory meet the budget. Accordingly, we also increase or decrease the mixed-precision of weights to guarantee the model size approaches the budget.

Experimental Results – Correlation study

✓ To verify the correlation between our QE-Score and accuracy, we randomly selected 100 models without QE-Score under the same searching space.

✓ Figures show Our QE-Score is valid to rank various architectures without training.

Experimental Results – Mixed Quantization Comparison

Table 3: Comparison with state-of-the-art efficient models with mixed-precision quantization. MBV2-4bit use 4-bit for the overall layers except for the first and last layer. †: 64 cores of Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz.

Model	Quant.	Search Devices	Design Cost (hours)	Model Size (MB)	BitOps (G)	ImageNet TOP-1	CO2e (marginal)
MBV2 [28]	8-bit	-	-	3.4	19.2	71.9%	-
MBV2 [28]	4-bit	-	-	2.3	7.0	68.9%	-
MBV2+HAQ [34]	mixed	GPUs	96N	-	-	71.9%	27.23N
DNAS [36]	mixed	GPUs	300N	-	57.3	74.0%	11.34N
SPOS [11]	mixed	GPUs	288+24N	-	51.9	74.6%	82+6.81N
APQ [35]	mixed	GPUs	2400+0.5N	-	16.5	74.1%	672+0.14N
APQ [35]	mixed	GPUs	2400+0.5N	-	23.6	75.1%	672+0.14N
Ours-19.2G	mixed	CPUs†	0.5N	3.2	18.8	74.8%	0.19N
Ours-7.0G	mixed	CPUs†	0.5N	2.2	6.9	70.8%	0.19N

✓ Our searched model has a higher accuracy boost than MobileNetV2 baseline, which is also better than other methods.

Experimental Results – Classification on ImageNet

Model	Quant.	256kB SRAM, 1MB Flash			320kB SRAM, 1MB Flash			512kB SRAM, 2MB Flash		
		Mem	Size	Acc.	Mem	Size	Acc.	Mem	Size	Acc.
MBV1 [14, 26]	mixed	<256kB	<1MB	60.2%	-	-	-	<512kB	<2MB	68.0%
MBV2 [28]	8-bit	-	-	-	308kB	0.72MB	49.0%	-	-	-
Proxyless [3]	8-bit	-	-	-	292kB	0.72MB	56.2%	-	-	-
MCUNet-int8 [17]	8-bit	238kB	0.70MB	60.3%	293kB	0.70MB	61.8%	452kB	1.65MB	68.5%
MCUNet-int4 [17]	4-bit	233kB	0.67MB	62.0%	282kB	0.67MB	63.5%	498kB	1.56MB	70.7%
MCUNetV2 [16]	8-bit	196kB	0.79MB	64.9%	-	-	-	465kB	1.67MB	71.8%
Ours	mixed	253kB	0.73MB	66.5%	308kB	0.71MB	68.2%	507kB	1.67MB	72.8%

Table 4: Comparison of ImageNet classification accuracy on IoT devices

✓ Under the tight constraints of 256kB SRAM and 1MB Flash, our model significantly improves the TOP-1 accuracy over quantized MCUNets.

✓ Whole Table 4 indicates our QE-Score can specialize higher-capacity structures on resource-constrained IoT devices.

Experimental Results – Classification on VWW

✓ Visual Wake Words (VWW) represents a realistic IoT use-case of identifying person.

✓ Our model is superior to MCUNet in both accuracy and memory utilization.

Experimental Results – Detection on WIDER FACE

Table 6: Comparison of face detection on WIDER FACE. The hard subset is the most authoritative benchmark since it contains the faces in easy and medium subsets [19].

Modal	Deals DAM	MAC	mAP			
widder	Peak KAIVI	MACS	Easy	Medium	Hard	
EagleEye [41]	1.17MB	0.08G	0.74	0.70	0.44	
RNNPool [27]	1.17MB	0.10G	0.77	0.75	0.53	
MCUNetV2 [16]	762kB	0.11G	0.85	0.81	0.55	
Ours-Face	650kB	0.04G	0.82	0.81	0.77	

 \checkmark To verify the generalization ability of our method, we conduct an experiment on Detection.

✓ Our model can achieve a competitive mAP performance on WIDER Face dataset.

Experimental Results – QBR Visualization

✓ Our method maintains higher-precision weights and lower-precision activations in the front few layers, while opposite in the latter few layers.

 \checkmark So QBR can strengthen resource utilization by embedding prior design knowledge.

Conclusion

- ✓ To the best of our knowledge, we first present the ranking strategy of mixed-precision quantization networks in the entropy view to measure the expressiveness of the network.
- ✓ Quantization Bits Refinement is proposed to adjust mixed quantization bits, which maximize the utilization of memory and storage resources on the IoT devices.
- ✓ Benefitting from the QE-Score, our approach can achieve architecture searching within less than half a CPU hour.

Contact Xiuyu by DingTalk

Contact Xiuyu by WeChat

Thank you for your listening

libaba Group