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Motivation 1

We can make Predictions from

Can we have a

» physics using
PDEs/Structure Form

> data using Machine Learning

Without Machine Learning With Machine Learning

* VERY SPECIFIC
INSTRUCTIONS
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Motivation 2

Inverse Problem: What we can measure is not what we

want to know! How to do machine learning?
Stock price — drift
Imaging: X-Ray, CT, Calderon problems

Qur work: "Inverse Game Theory": policy — utility
(not included today)

How much data we need?
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Questions Aim to Answer in This Talk

Satistical Limit. For a given PDE , how large the sample size

are needed to reach a prescribed performance level?

Optimal Estimators

Computational Power
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Questions Aim to Answer in This Talk %

Satistical Limit. For a given PDE , how large the sample size

are needed to reach a prescribed performance level?

Optimal Estimators. How complex the model are needed to

reach the satistical limit?

Computational Power. How can we design an algorithm?

Yiping Lu Statistical Numerical PDE 4 / 55



Answers by this Talk—=Solving PDE

Statistical Limit. Gradient value have more information

Optimal Estimators

Computational Power
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Answers by this Talk—=Solving PDE

Statistical Limit. Gradient value have more information

Optimal Estimators. PINN and Modified DRM are optimal

Computational Power. Sobolev Loss Accelerates Training
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Answers by this Talk—Operator Learning

Statistical Limit. Decided by hardest side (input/output) ]

Optimal Estimators

Computational Power
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Answers by this Talk—Operator Learning

Statistical Limit. Decided by hardest side (input/output)

Optimal Estimators. bias/variance contour

Computational Power. Multi-level Monte Carlo Algorithm
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Insights for Empirical Users

Deep Ritz Method High dimensional problem,
Smooth problem

PINN Low dimensional problem, Non-smooth
problem

Operator Learning needs multi-scale ensemble to
achieve the bias and variance pareto frontline.
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Related Work

Bayesian Formulation

Convergence rates for penalised least squares estimators in PDE-constrained regression

problems. SIAM UQ

Sampling Algorithm
On polynomial-time computation of high-dimensional posterior measures by Langevin-type

algorithms.

Complicated Inverse Problem

Consistent inversion of noisy non-Abelian X-ray transforms. CPAM 2021.

I[CM note

On some information-theoretic aspects of non-linear statistical inverse problems.
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1. Problem Formulation
2. Lower Bound
3. Upper Bound
Empirical Risk Minimization

Gradient Descent

4. Linear Opeartor Learning



Problem Formulation
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Problem Formulation

Static Schrodinger Equation

—Au+ Vu=1f
u=>0

in Q,
on 0Q).

What we observed:
Random Samples in Domain: {x;}"_; ~ Unif(Q)

RHS Function Values: {f; = f(x;) + 1},
What we want:

An Esitmate of @ in Sobolev Norm.
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Lower Bound
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General Lower Bound t;\
Information Theoretical Lower Bound 93
Any Estimator H using (Xj, f;)7_; can't do better than

2

inf sup E|H({X, f}ic1...n) — U2 = n 2254,

H yecx(Q)
For
t-th order PDE Now:
Solution u e HX PINN: H? norm

— TN
Consider Convergence in H* DRM: H” norm
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Upper Bound
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Problem Formulation
Strong form (residual minimization) — Physics

Informed Neural Network/DGM
L(u) = |(=A+ V)u—fll2q
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Problem Formulation

Strong form (residual minimization) — Physics
Informed Neural Network/DGM

L(u):=|(—A+ V)u— f|f2(m

Variational form — Deep Ritz Methods

u* = arg min 8 J HVUH2+VHUH2
ueH1(Q)

JQ fu(x)
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Further Question

Will  different objective function gives
different answers to Statistical Effi-
ciency,Optimization?
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Error Decomposition

If we

E (S(Un) - E(U*)) < E[E(un) — En(up) +E[E,(ug)] — E(uy)
Algen Alpiag

+ & (ug) — E(u™).

—_—

A&approx

bias+variance decomposition:

approximation + % bound

But leads to sub-optimal results... (shin et 212020, fLu et al 2021], [Duan et al

2021]
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Estimating the mean

Goal. Estimate 0 = [E[X] via loss function %(9 — x)?

Motivating Example t\
.j%a

Empirical Solution of {, loss: 0, = %Zle x;, using chernoff bound

2100 L
we know 0, — 0 = @ w.h.p.
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Motivating Example

Estimating the mean %3
Goal. Estimate 8 = E[X] vi }

via loss function %

5(0 — x)?
Empirical Solution of {, loss: 0, = 127 1 Xi, using chernoff bound

we knowen—9:\/% h.p.

The generalization gap L(0,) —

L(6*) =6 — %> w.h.p
2| 1
L(8,) — L(67) = (8, — 07)% < C—>
A O(%) fast rate bound.

Yiping Lu
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Observation 1: Fast rate via Localization

The variational form has some "strongly convex"

Assume 0 < Vipin < V(x) < Vipay for all x e Q

2z
max(1, Vimax)

2

(L, V) 1) 6

(&(w) — &(u*)) < Jlu— ¥l ) <

Can we have a % fast rate generalization bound?
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Local Rademacher Complexity %\

o

Local Rademacher Complexity

Y(r) = ER{feF T(f) <r}

The generalization bound: fix point solution of W (r) = r

Key:
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Local Rademacher Complexity

Local Rademacher Complexity

G

Y(r) = ER{feF T(f) <r}

The generalization bound: fix point solution of W (r) = r

r 1
— = = [ = =
n n
R
1/v/N rate

Key: increase speed according to r.
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s Fast Rate Optimal?

For PINN, Yes!. For DRM, Nol

Upper Bounds

Objective Function \ Neural Network \ Fourier Basis

Lower Bound

. _ _2s=2 _ _25=2 — 252

Deep Ritz n~d+2-2 logn n-d+z-2 n~d+z—4
2s—4 2s5—4 2s—4

PINN n~d+z-4 log n N~ dt2s—4 N diz4

Upper bounds and lower bounds Fast Rate achieved.

Why?

Yiping Lu

Statistical Numerical PDE

21 /55



A Fourier Basis View
Solving a simple PDE Au = f using Fourier Basis.
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A Fourier Basis View t\
D

Solving a simple PDE Au = f using Fourier Basis.

First Estimate f then solve u, f, = %Z f(x;)d,(x;), then u =

3 o, (x)
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A Fourier Basis View %\
Solving a simple PDE Au = f using Fourier Basis. va
Estimator 1

First Estimate f then solve u, f, = %Z f(x;)d,(x;), then u =

3 o, (x)

Estimator 2

Plug u = > u,b,(x) into the Deep Ritz Objecive function

5 2
%; (ZZ] Uzvd)z(xl)> +ZZ: Uz(bz(xi)f(xi)
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Estimatorl is Optimal
Consider estimating in H_; norm using Fourier Basis up

to Z, ie. Z:={ze NY|z|o < Z}.

Bias:
| 3 EbaliasC Y 2 < o2 YA
|zlloo>Z |z]loo>Z

Variance:

E|f — £, <E > (E-£Pd:)3, < D |z Var(£)

|z[co<Z |z]co<Z

Final bound: Z2(s-1 4 2422

n
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Difference Between Estimatorl and 2

Estimator 1: The Fourier coefficient of the solution of
Estimator 1 is

= diag (HZH2)HZHOO<Z fz.

Estimator 2: The Fourier coefficient of the solution of

Estimator 2 is
~1

U, = (% Z vd)i(xi)vd)j(xi)) f,,
i—1

liloo<Z jllco<Z
~ 7

~
empirical Gram Matrix A

d
un — a3 00 | (BA) — A) [ ocZ-
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Difference Between Estimatorl and 2

Estimator 1: The Fourier coefficient of the solution of
Estimator 1 is

= diag (HZH2)HZHOO<Z fz.

Estimator 2: The Fourier coefficient of the solution of

Estimator 2 is
~1

U, = (% Z vd)i(xi)vd)j(xi)) f,,
i—1

liloo<Z jllco<Z
~ 7

~
empirical Gram Matrix A

d
Thus [u — u[3, ¢ [ (BA) — A)|[f; c%-
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How Much Gradient We Need?
We Introduce the Modified DRM

N

1
() = = 10 SV utx) 1]
Jj=1
Sample MoTe Gradients (4)

%;[\Q!( X)u(X) ~ (X))

1
E < &2 o g2571) o g ~ paezsd and

N

—:Ezznm

Thus Variance:
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Experiment

Lo
y,

|
n

ss07 |H jo bo

|
@

I6 8 10 1‘2
Log(Number of Training Data)

14

6 8 10 ) 1

Log(Number of Training Data)

(a) Deep Ritz Methods (b) Modified Deep Ritz Methods
25 -2 25 -2
Theory drn-2 -0 dt12—4
Empirical 0.6595 0.7953
R2 Score 0.91 0.89
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Summarize in One Table. .. %

Upper Bounds
— PP . — Lower Bound
Objective Function | Neural Network | Fourier Basis
i 25—2 25—2 25—2
Deep Ritz N~ d+2s—2 |og n n~ d+2s—2 n~ d+2s—4
e . 252 252 252
Modified Deep Ritz | n~d+2-2 logn n-d+2s-4 n~d+x—4
2s—4 25s—4 2s—4
PINN N drE—a log n N4 N~ o4

Upper bounds and lower bounds we achieve in this paper and
previous work. The upper bound colored in red indicates that the
convergence rate matches the min-max lower bound.
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Observation 3: Tigher Local Rademacher %\

o

Local Rademacher Complexity

W(r) > ER{fedF T(f)<r}
———

loss function

For nonparametric estimation: £, Norm
For Solving PDE: Sobolev Norm

Can Tigher Norm leads to Tigher Bound?
Fourier Basis Yes DNN No
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Gradient Descent

Why you select Ritz form
in the first paper

Me

Yiping Lu
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Gradient Descent

Why you select Ritz form|
in the first paper

Me

minimizing §(Au)? is crazy to me
due to the condition number of ATA

Lexing

Yiping Lu Statistical Numerical PDE

29 / 55



Gradient Descent

sin(x) / Number of Epochs

12 loss

Why you select Ritz forml
in the first paper

Me

1500 2000
Number of Epochs

ReLU(x) / Number of Epochs

" L2 loss
| e HI loss

minimizing §(Au)? is crazy to me
due to the condition number of ATA

Lexing ~

4000 a0
Number of Epochs
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(Stochastic) Gradient Descent

Let's consider Au = f via minimizing % (f, A1f) — (u, Axf)

Deep Ritz Methods. A, = A, A, = Id
PINN. A; =A%, A, = A
f(X) - <91 Kx>
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(Stochastic) Gradient Descent

Let's consider Au = f via minimizing % (f, A1f) — (u, Axf)

Deep Ritz Methods. A, = A, A, = Id
PINN. A; =A%, A, = A

We consider parameterize f using kernel regression f(x) = (0, K,) .
Then we apply a stochastic gradient descent and get

9t+1 - et _n(<e"A1KX,'> KX,' - ﬁ‘A2KX,')
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Setting: Sobolev Learning Rate

We can formulate the Sobolev Norm as [H%*] norm as

/2 . 2
| Zi>1 aiuj'x &jl| (o := (Zi>1 a,?)
The evaulation Sobolev norm can be different as the

training Sobolev norm. We consider convergence rate
in HY norm.
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First Result: Three Regime %\

J

Can be concluded into Three Regimes

& (3:function smoothness

oc:kernel smoothness

(larger, smoother)

The first Regime:

Suboptimal, concentration error of

%KX® K, — X~ dominates
X

Similar to the modified DRM!

Sub-Optimal
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First Result: Three Regime

Can be concluded into Three Regimes

(3:function smoothness

o:-kernel smoothness

(larger, smoother)

The second regime:

o> Constant Lr, Multipass

Sub-Optimal

Yiping Lu Statistical Numerical PDE 34 / 55



First Result: Three Regime %\

J

Can be concluded into Three Regimes

N _ (3:function smoothness
Single Pass

oc:kernel smoothness

(larger, smoother)

The third regime:

Small Lr, Single Pass

Sub-Optimal Online Learning
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| ower Bound

Recall

20—

inf sup E|H{X, fitiz1..n) —u"|y2 = n 22744,

H ueco(Q)

and translate it into kernel setting

(B—vy)ex

I~ FIRqy < P2 o

They matches for

x=1/d
B=2x,v=2s
(CJ — D) = T (p.a: eigen decay of A1.A45)
Yiping Lu Statistical Numerical PDE 36 / 55



Upper Bound

We can achieve infomration theortical optimal rate
S (ot [ _
n Bot2(p-a)+1 vig Bias-Variance Tradeoff.

Train Longer, Bias Smaller.

Train Longer, Variance Larger.
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Convergence time

The convergence time will equal to the optimal selection

of A

Iteration Time

___o4p
A = nBa+2(p-q)+1

Independent of .
(p-q) is from the equation.
the only thing effects!

Yiping Lu Statistical Numerical PDE
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DRM Vs PINN

x+p
Recall Iteration time A = nP2(-a+1  To compare DRM

and PINN, we should fix p — g and then consider the

dependency of iteration time on p.

PINN is faster
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DRM Vs PINN

x+p
Recall Iteration time A = nP2(-a+1  To compare DRM

and PINN, we should fix p — g and then consider the

dependency of iteration time on p.

Denominator do nothing with p
Numerator
p < 0, > 0, differential operator helps to balance the

condition number of the kernel operator. PINN is faster.

&+ p > 0 means activation function should be smooth
for NTK
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DRM Vs PINN

Relative Error
= = o

Figure: Z’c_lﬂ sin(27x)

200 300
Iteration

Relative Error

400 600
Iteration

Figure: 27:1 sin(47tx)

Yiping Lu
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Variance of Integral by Parts

1
2

We considered the dynamic

Ep,(x.y)= (U K @ A1 Keu) — y (u, A2K)

1 n
0: =0, 1+v= ), | yifloKy — (81, AiKy)
ni:l
et le Ale

not ((8-1,41Kx;) 5 K

for the variance of integral by parts may dominated.

Yiping Lu Statistical Numerical PDE 41 / 55



Linear Opeartor Learning
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Setting

(Linear) Operator Learning: Mapping from one

Function space to another. Infinite Dimensional
Examples:
Mapping from f to Af
Mapping from boundary condition to PDE solution
Mapping from t =0 to t = 1 for uy = Au
Related works

Fourier Neural Operator Learning
Deep Operator Net
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Today: Linear Operator Learning

Linear Operator Learning: Can we learn a linear

mapping from one Sobolev Space to another?
Input Kernel Hilbert Space
Kernel Eigen Decay: p
Sobolev-3 norm
operator norm defined as in Sobolev-f3’ norm
Output Kernel Hilbert Space
Kernel Eigen Decay: g

Sobolev-y norm
operator norm defined as in Sobolev-y’ norm
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| ower Bound

We first present our lower bound result:

For all algorithm £, we have

—mi BB’ vy
E|£ ({(u v)}Y,) - > v
Rate Decided by the Hardest Side
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Optimal Linear Operator Learning

(A) Kernel Regression (B) Kernel Operator Learning

Key Selection of spaces needs to be learned and spaces
keep as bias.
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Optimal Linear Operator Learning

|dea Learn all the basis under the equi-variance linel

which gives smallest bias!

Let's only learn

o
0Q
<

Yiping Lu

Statistical Numerical PDE
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Spectral View

A Input Space

Variance Contour

Output Space”

Learning all the spectral operators
under certain variance

B'+p v’
q

X Py

< Nmax{ %/:;’YV/}

Optimal

Yiping Lu
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Spectral View

Learning all the spectral operators

under certain variance
A Input Space

B'+p v’ Btp y'
X P ya <NmaX{B+P'Y}
Variance Contour Optimal

Learning all the spectral operators
under certain bias

Output Space)

B—p' v/ —v B—B" v'—v
X Py d gNmaX{ﬁﬂ" Y }

Also Optimal
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A Multilevel Algorithm %

A Input Space

The Gap between two curves
enables a multi-level training
algorithm

Variance Contour

The first level:

use all information to learn
smooth part

Output Space)
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A Multilevel Algorithm

The Gap between two curves
enables a multi-level training
algorithm

A Input Space

The first level:

Variance Contour

use all information to learn
smooth part

The second level:
Output Space) e ]
use less information to learn

rougher part
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Main Message

PDE Solving:

Deep Ritz Method High dimensional problem,
Smooth problem

PINN Low dimensional problem, Non-smooth
problem

Linear Operator Learning

Bias-Variance "Pareto Optimal" Learning is Optimal
Achieved by Multi-level Ensemble
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Take Home Message %

Non-parametric statistics view of numerical PDE solver

Gives us new constraints to design objective functions to be
statistical /information theoretical optimal

sparsity of the weight is not a good measurement of the
complexity of gradients, we need to find new measure

GD analysis suggest Sobolev Training

Min-max optimal rate for linear operator leaning
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Thank you for listening!

and Questions?

Yiping Lu

yplu@stanford.edu.cn
https://web.stanford.edu/ yplu/
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